
MAnagement of Security information and events
in Service InFrastructures

MASSIF
FP7-257475

D4.2.1 - Formal Specification of Security
Properties

Activity A4 Workpackage WP4.2

Due Date Month 12 Submission Date 2011-09-30

Main Author(s) Jürgen Repp (Fraunhofer)

Roland Rieke (Fraunhofer)

Contributor(s) Andreas Fuchs (Fraunhofer), Nico Lincke (Fraunhofer)

Version v1.0 Status Final

Dissemination
Level

PU Nature R

Keywords security modelling framework, security requirements, requirements elicitation

Reviewers Igor Kotenko (SPIIRAS)

Valerio Formicola (CINI)

Part of the Seventh
Framework Programme

Funded by the EC - DG INFSO

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Version history

Rev Date Author Comments

V0.1 2011-07-11 J. Repp, R. Rieke initial version in BSCW

V0.2 2011-08-31 J. Repp, R. Rieke review version

V0.9 2011-09-30 J. Repp, R. Rieke final version

V1.0 2011-09-30 Elsa Prieto (Atos) final review and official delivery

©2011 by MASSIF Consortium 2 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Glossary of Acronyms

Abbr Abbreviation

BSCW Be Smart - Cooperate Worldwide

CGS Core Game System

CSS Cascading style sheets

DoW Description of Work

EC European Commission

EU European Union

FP7 Seventh Framework Programme

MASSIF MAnagement of Security information and events in Service InFrastructures

MSS Managed Security Service

MSSP Managed Security Service Provider

PDC Primary Data Centre

PU Public Usage

R&D Research & Development

RSS Really Simple Syndication

RTU Remote Terminal Unit

SeBB Security Building Block

SeMF Security Modeling Framework

SIEM Security Information and Event Management

©2011 by MASSIF Consortium 3 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Executive Summary

This deliverable describes a method which can be used to identify abstract security requirements in order
to reach generic security goals. Such a formal representation of the security requirements is necessary
for different reasoning processes within the novel security information and event management concepts
proposed by MASSIF. At configuration time of a SIEM, questions addressed can be:

1. “Which security goals are not covered by security requirements?”,

2. “Which information must be provided by the SIEM sensors in order to verify the given require-
ments?”, and “Which requirements cannot be measured by the given SIEM information sources?”.

At runtime, we should be able to answer questions like:

3. “Which security requirements and associated security goals are broken by current security event
measurements?”.

In order to support the answering of theses questions, we show, how a complete set of security require-
ments for a given high-level security goals can be elicited, which helps to answer question 1. Further-
more, we show, how the derived security requirements from the analysed MASSIF scenarios can be
formalised using the proposed modelling framework. This is the first step in the reasoning chain to an-
swer question 2. Question 3 can then be answered by backward chaining of the reasoning in question
2 starting with the measured security information via the broken security requirement to the broken se-
curity goal. In MASSIF this analysis is based on a scenario description of a system, providing artifacts
such as a scenario description, process models, generic domain knowledge, use cases, misuse cases and
the respective security requirements (cf. D2.1.1 [12]). The missing steps in the reasoning chain, namely
the derivation of measurement requirements from the abstract security requirements will be subject of a
forthcoming deliverable.

©2011 by MASSIF Consortium 4 / 41

Contents

1 Introduction 7
1.1 Deliverable Context . 7
1.2 Deliverable Content . 7

2 Security Properties 9
2.1 The Security Modelling Framework SeMF . 9

2.1.1 Formal Languages . 9
2.1.2 Agents’ Local Views and Initial Knowledges 10

Agents’ Knowledge about the Global System Behaviour 10
Agents’ View of the Global System Behaviour 11

2.1.3 Basic Property Definitions . 12
Authenticity . 12
Integrity . 13
Confidentiality . 13

2.1.4 Specific Property Instantiations . 13

3 Security Requirements Elicitation Process 16
3.1 Functional Model . 16
3.2 Functional Security Requirements Identification . 17

4 Specification of Security Properties 20
4.1 Data Integrity in the Dam Scenario . 20
4.2 Access Control in Dam Scenario . 22
4.3 Data Access Isolation in the Olympic Games Scenario 28

5 Conclusion 31

6 Appendix A 35
6.1 SeMF Property Definitions . 35

Authenticity with Respect to a Phase . 35
Proof of Authenticity . 37
Parameter Confidentiality . 38
Enforcing system behaviour . 40
Trust . 40

©2011 by MASSIF Consortium 5 / 41

List of Figures

2.1 System behaviour and WP . 11
2.2 P ’s world after ω has happened . 12

3.1 Dam use case 1 . 17
3.2 Workflow of the requirements elicitation process . 19

4.1 Functional Dependencies . 21
4.2 Screenshot of a SeMF specification in Eclipse environment 23
4.3 UML state diagram of the behaviour of the control station administrator (CSA) 26
4.4 Monitor automaton for the control station administrator (CSA) 26
4.5 Monitor automaton w.r.t. the control station staff . 27
4.6 Data flow user data . 29

5.1 Workflow of the monitoring rule elicitation process . 32

©2011 by MASSIF Consortium 6 / 41

1 Introduction

1.1 Deliverable Context

The activity A4 within MASSIF aims to design and implement new process/attack analysis and simu-
lation techniques in order to be able dynamically to relate events from different execution levels, define
specific level abstractions, evaluate them with respect to security issues and during runtime interpret
them in context of specific security properties. Activity A4 comprises three main objectives which are
covered by respective work packages: WP 4.1 provides dynamic abstraction techniques in order to adapt
the actual specification level to the scale of the system to be managed, WP 4.2 evolves advanced methods
in the context of predictive security monitoring for the evaluation of security-related events, and WP 4.3
develops a new approach to security evaluation and advanced techniques for attack modelling/simulation,
threat analysis and risk evaluation.

This deliverable documents the outcome of task T4.2.1, the first task in WP 4.2. In order to relate
security-related events and their interpretation with respect to the required security properties, this task
identifies the abstract security properties which will be considered in the formal process analysis in
WP4.2. The examples given are based on the MASSIF scenario descriptions in D2.1.1 [12]. In the
upcoming deliverables of WP4.2 the identified monitoring rules have to be integrated in the predictive
analyser.

1.2 Deliverable Content

The objective of task T4.2.1 is to identify the abstract security properties which will be considered in the
formal process analysis. These properties have to be formalised and further they will be refined for each
inspected process depending on the requirement analysis done in WP 2.1.

In this deliverable we base the formalisation of the abstract security properties on the Security Mod-
eling Framework (SeMF) developed by Fraunhofer SIT. The predefined property instantiations (cf. Sec-
tion 2.1.4) build the base for the requirements elicitation process and the refinement process used to iden-
tify necessities for system and process monitoring. The method for deriving assumptions in the SeMF
terminology, which can be used for reasoning, from domain knowledge and available SIEM capabilities
is sketched.

The most important contributions of this work with respect to the guidelines given in section 7 of
D2.1.1 [12] are:

Coverage of Security Goals. The proposed requirements elicitation method uses a functional depen-
dency graph which ensures that uncovered aspects of the high-level security goals are revealed.

©2011 by MASSIF Consortium 7 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Information Needs. A lack of SIEM monitoring capabilities would prevent the derivation of assump-
tions necessary for the reasoning process. This problem would also be detected in the proposed
requirements elicitation process (cf. Figure 3.2).

Sufficiency of Monitoring Capabilities. Assumptions can be derived from the monitoring capabilities
for reasoning whether the given requirements are fulfilled under these assumptions. This reasoning
process can’t be successful if monitoring capabilities are insufficient or can’t be assigned to entities
used in the current abstraction level of the system model.

Traceability. The derived relations between security event measurements, the associated security re-
quirements and corresponding assumptions and the security goals can be used to identify the con-
crete high-level goals affected by the measurements.

We demonstrate the use of the proposed method by means of important use cases adapted from the
deliverable D2.1.1 “Scenario Requirements”. The examples are covering the main classical types of
abstract security requirements and give an extensive overview of the application of the generic SeMF
instantiations.

The remainder of the document is structured as follows: Chapter 2 describes the security modelling
framework which is used as the basis for our security requirement definition in MASSIF. In Chapter 3
the application of a model based approach to systematically identify security requirements is presented.
In Chapter 4 the elicitation of the classical security properties, authenticity, integrity, and confidentiality
is demonstrated for selected use cases from the MASSIF scenarios. Finally, some conclusions and an
outlook to further work is given in Chapter 5.

©2011 by MASSIF Consortium 8 / 41

2 Security Properties

We will now describe in detail the Security Modelling Framework SeMF developed by Fraunhofer SIT
that will be the basis for our security requirement definition in MASSIF. Exemplary on several MASSIF
use cases we present a model-based approach to systematically identify security requirements for the
MASSIF scenarios.

2.1 The Security Modelling Framework SeMF

Within SeMF, systems are specified in terms of sequences of actions, while the security properties of
systems are specified as specific constraints regarding which sequences of actions can or can not occur.
Security properties can be specified regardless of any specific abstraction level. Most basic SeMF el-
ements are result of previous work, e.g. within the European projects SERENITY [1], EVITA [2] and
TERESA.

In the following, we first give a brief overview of formal languages as a means to system specification
and then introduce our main additional concepts, an agent’s (acting entities of the system) local view and
an agent’s initial knowledge. We then give the formal definitions of the most important security properties
based on these concepts (e.g. authenticity, confidentiality), and some instantiations relevant in MASSIF.
It is forseen that further property definitions and instantiations will be necessary in order to capture all
security and dependability properties relevant in MASSIF.

2.1.1 Formal Languages

Properties of a concurrent system in the sense of Alpern and Schneider [4] are defined as sets of se-
quences of states. Similarly, the behaviourB of a discrete system can be formally described by the set of
its possible sequences of actions (traces). ThereforeB ⊆ Σ∗ holds where Σ is the set of all actions of the
system, and Σ∗ is the set of all finite sequences of elements of Σ, including the empty sequence denoted
by ε. This terminology originates from the theory of formal languages, where Σ is called the alphabet,
the elements of Σ are called letters, the elements of Σ∗ are referred to as words and the subsets of Σ∗ as
formal languages. Words can be composed: if u and v are words, then uv is also a word. This operation
is called the concatenation; especially εu = uε = u. A word u is called a prefix of a word v if there is a
word x such that v = ux. The set of all prefixes of a word u is denoted by pre(u); ε ∈ pre(u) holds for
every word u. We denote the set of letters in a word u by alph(u) and the number of occurences of any
action of a set Γ in a word u by card(Γ, u). If Γ consists of only one action a, we simply say card(a, ω).

Formal languages that describe system behaviour have the characteristic that pre(u) ⊆ B holds for
every word u ∈ B. Such languages are called prefix closed . System behaviour is thus described by

©2011 by MASSIF Consortium 9 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

prefix closed formal languages.
The set of all possible continuations of a word u ∈ B is formally expressed by the left quotient

u−1(B) = {y ∈ Σ∗ | uy ∈ B}.
Different formal models of the same application/system are partially ordered with respect to dif-

ferent levels of abstraction. Formally, abstractions are described by so called alphabetic language ho-
momorphisms. These are mappings h∗ : Σ∗ −→ Σ′∗ with h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and
h∗(Σ) ⊆ Σ′ ∪ {ε}. So they are uniquely defined by corresponding mappings h : Σ −→ Σ′ ∪ {ε}. In the
following we denote both the mapping h and the homomorphism h∗ by h. These homomorphisms map
action sequences of a finer abstraction level to action sequences of a more abstract level.

Classical liveness and safety properties can easily be specified for such a system using well known
formalisations. For security properties, we need to extend the system model by taking into account the
agents’ view of the system and agents’ knowledge about the global system behaviour.

2.1.2 Agents’ Local Views and Initial Knowledges

Security properties can only be satisfied relative to particular sets of underlying system assumptions.
Examples include assumptions on cryptographic algorithms, secure storage, trust in the correct behaviour
of agents or reliable data transfer. Relatively small changes in these assumptions can result in huge
differences concerning satisfaction of security properties. Every model for secure systems must address
these issues. However, most existing models rely on a fixed set of underlying assumptions (see for
example [5] and [13]). Most of these assumptions are often implicitly given by particular properties
of the model framework. Thus, it is very hard to verify whether a particular implementation actually
satisfies all of these assumptions. Further, imprecise security assumptions might result in correct but
useless security proofs and finally in insecure implementations. Therefore, a model for secure systems
needs to provide the means to accurately specify underlying system assumptions in a flexible way.

In order to provide the required flexibility, SeMF extends the system specification by two compo-
nents: agents’ knowledge about the global system behaviour and agents’ view. The knowledge about the
system consists of all traces that an agent initially considers possible, i.e. all traces that do not violate any
system assumptions, and the view of an agent specifies which parts of the system behaviour the agent
can actually see. In the following paragraphs, these two components and their relations are explained in
detail.

Agents’ Knowledge about the Global System Behaviour

For any agent P its knowledge WP ⊆ Σ∗ about the global system behaviour is considered to be part of
the system specification.

We may assume for example that a message that was received must have been sent before. Thus
an agent’s WP will contain only those sequences of actions in which a message is first sent and then
received. All sequences of actions included in WP in which a digital signature is received and verified
by using some agent Q’s public key will contain an action where Q generated this signature.

Care must be taken when specifying the sets WP for all agents P in order not to specify properties
that are desirable but not guaranteed by verified system assumptions. In a setting for example where
we assume one time passwords are used, if P trusts Q, WP contains only those sequences of actions in

©2011 by MASSIF Consortium 10 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

which Q sends a certain password only once. However, if Q cannot be trusted, WP will also contain
sequences of actions in which Q sends a password more than once.

The specification of the desired system behaviour generally does not include behaviour of malicious
agents which has to be taken into account in open systems. An approach which is frequently used
for the security analysis of cryptographic protocols is to extend the system specification by explicit
specification of malicious behaviour. However, in general malicious behaviour is not previously known
and one may not be able to adequately specify all possible actions of dishonest agents. In our approach,
the explicit specification of agents’ knowledge about system and environment allows to discard explicit
specification of malicious behaviour. Every behaviour which is not explicitly excluded by some WP is
allowed. Denoting a system containing malicious behaviour by B and the correct system behaviour by
BC , we assume BC ⊆ B ⊆ Σ∗. We further assume B ⊆ WP , i.e. every agent considers the system
behaviour to be possible, as reasoning within SeMF primarily targets the validation and verification of
security properties in terms of positive formulations, i.e. assurances the agents of the system may have.
Other approaches that deal with malfunction, misassumptions and attacker models can not rely on this
assumption.

Security properties can now be defined relative to WP . The relation between the system behaviour
without malicious actions BC , the system behaviour including malicious actions B, and WP is graphi-
cally shown in Figure 2.1.

Σ∗

WP

B

BC

Figure 2.1: System behaviour and WP

Agents’ View of the Global System Behaviour

The set WP describes what P knows initially. However, in a running system P can learn from actions
that have occured. Satisfaction of security properties obviously also depends on what agents are able
to learn. After a sequence of actions ω ∈ B has happened, every agent can use its local view of ω
to determine the sequences of actions it considers to have possibly happened after ω has happened. In
order to determine what is the local view of an agent, we first assign every action to exactly one agent.
Thus Σ =

⋃̇
P∈PΣ/P (where Σ/P denotes all actions performed by agent P , and

⋃̇
denotes the disjoint

union). The homomorphism πP : Σ∗ → Σ∗/P defined by πP (x) = x if x ∈ Σ/P and πP (x) = ε if
x ∈ Σ \ Σ/P formalises the assignment of actions to agents and is called the projection on P .

The projection πP is the correct representation of P ’s view of the system if all information about
an action x ∈ Σ/P is available for agent P and P can only see its own actions. In this case P ’s local

©2011 by MASSIF Consortium 11 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

view of the sequence of actions ω = send(P,m1)rec(Q,m1) for example is send(P,m1). However,
P ’s view may be finer. For example it may additionally note a message that was sent over a network
bus without being able to see who sent it, in which case P ’s local view of send(sender,message) e.g.
is send(message). P ’s local view may also be coarser than πP . In a system the actions of which are
represented by a triple (global state, transition label, global successor state), although seeing its own
actions, P will not be able to see the other agents’ states. Thus, we generally denote the local view of an
agent P on Σ by λP : Σ∗ → Σ∗P . The local views of all agents together contain all information about
the system behaviour B.

For a sequence of actions ω ∈ B and agent P ∈ P, λ−1
P (λP (ω)) ⊆ Σ∗ is the set of all sequences that

look exactly the same from P ’s local view after ω has happened. In the above network bus example all
actions in {send(sender1,message), send(sender2,message), . . .} look identical for P . Depending
on its knowledge about the system S, underlying security mechanisms and system assumptions, P does
not consider all sequences in λ−1

P (λP (ω)) possible. Thus it can use its initial knowledge to reduce this
set: λ−1

P (λP (ω)) ∩WP describes all sequences of actions P considers to have possibly happened when
ω has happened. This set is similar to the possible worlds semantics that have been defined for authen-
tication logics in the context of cryptographic protocols [3, 14]. Our notion is more general because for
authentication logics λP and WP are fixed for all systems, whereas in our approach they can be defined
differently for different systems. The knowledge of P relative to a sequence of actions ω is graphically
shown in Figure 2.2.

Σ∗

WP

B

BC

λ−1(λ(ω)) ∩WP

λ−1(λ(ω))

ω•

Figure 2.2: P ’s world after ω has happened

2.1.3 Basic Property Definitions

The concepts introduced in the previous section will now be used to define the most important security
properties. Further definitions are given in Appendix A.

Authenticity

Authenticity can be seen as the assurance that a particular action has occurred in the past.1

1Please note that in order to achieve authentication one additionally needs assurance about the time of the occurrence of the
action (see Section 6.1 authenticity with respect to a phase).

©2011 by MASSIF Consortium 12 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Since usually authenticity of some action for a certain agent is required, the definition has to refer in
some way to the agent. Thus we call a particular action a authentic for an agent P if in all sequences that
P considers to have possibly happened after a sequence of actions ω has happened, some time in the past
a must have happened. By extending this definition to a set of actions Γ being authentic for P if one of
the actions in Γ is authentic for P we gain the flexibility that P does not necessarily need to know all
parameters of the authentic action. For example, a message may consist of one part protected by a digital
signature and another irrelevant part without protection. Then, the recipient can know that the signer has
sent a message containing the signature, but the rest of the message is not authentic. Therefore, in this
case, Γ comprises all messages containing the relevant signature and arbitrary other message parts.

The formal definition for authenticity is as follows.

Definition 1 (Authenticity) A set of actions Γ ⊆ Σ is authentic for P ∈ P after a sequence of actions
ω ∈ B with respect to WP if alph(x) ∩ Γ 6= ∅ for all x ∈ λ−1

P (λP (ω)) ∩WP .

Integrity

Note that in most security-oriented frameworks data origin authenticity implies integrity.

Confidentiality

Confidentiality is required for data occurring in different types of actions. Among others these can be
actions concerned with sending or receiving data or manipulating data stored on a particular device.
We may also want to keep the agent acting confidential for privacy reasons. An adequate notion of
confidentiality therefore has to provide the flexibility to define confidentiality for arbitrary parameters
of the actions. The notion of parameter-confidentiality presented in [9] provides this flexibility (cf.
Appendix A).

2.1.4 Specific Property Instantiations

The basic notions for the accurate specification of security requirements are very general, and using
these notions to specify more concrete security requirements can result in very complex expressions. As
such, they are difficult to handle when it comes to including them into standard approaches for systems
modeling and verification. Consequently, in the SERENITY project [11], we started the definition of a
requirements language using refined notions that describe concrete instantiations of the above security
requirements. This language has been further extended in the EVITA project [2] and is further extended
in the course of the TERESA project. In MASSIF we use these results to specify the security and
dependability properties for the given scenarios.

Definition 2 (auth) For P ∈ P and a, b ∈ Σ, auth(a, b, P) holds in B if for all ω ∈ B that contain an
action b, action a is authentic for agent P after ω corresponding to Definition 1.

Note that in most cases, b will be in P ’s local view.
The following two security requirements are instantiations of enforce-behaviour. The first one de-

scribes that in all sequences of actions, whenever action b happens, action a must have happened before,
the second one describes the opposite (whenever b has happened, a must not have happened before).

©2011 by MASSIF Consortium 13 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Definition 3 (precede) Let Σ be a set of actions, a, b ∈ Σ. Let B,L ⊆ Σ∗ with L defined as follows:

L = Σ∗ \ ((Σ \ {a})∗{b}Σ∗)

Then precede(a, b) holds if enforce-behaviour(L,B) holds.

Definition 4 (not-precede) Let Σ be a set of actions, a, b ∈ Σ. LetB,L ⊆ Σ∗ with L defined as follows:

L = Σ∗ \ (Σ∗{a}Σ∗{b}Σ∗)

Then not-precede(a, b) holds if enforce-behaviour(L,B) holds.

Definition 5 (not-happens) Let Σ be a set of actions, a ∈ Σ. Let B ⊆ Σ∗

Then not-happens(a) := ∀ω ∈ B : a /∈ alph(ω) holds.

For the specification of anonymity and privacy requirements, we can use the notion of confidential
reflecting a specific confidentiality property according to Definition 15. Generally in order to specify
confidentiality, we need to specify:

• the agents who are allowed to know the data to be confidential,

• the set M of possible values of the parameter that shall be confidential,

• the homomorphism µ that identifies all actions that contain the parameter that shall be confidential
and that a malicious agent can use to gain knowledge about the parameter (µ maps these actions
onto their “types” and at the same time extracts the parameter to be confidential:
µ : Σ∗ −→ (Σt ×M)∗),

• the language L that characterizes the relations between actions that are allowed to be known by
a malicious agent (e.g. the relation reflecting that the same message occurs in a specific send and
receive action),

• the local views of malicious agents,

• the initial knowledges of malicious agents.

The parameters or the confidential property are instantiated as follows:

• We do not fix the set of agents that are allowed to know the parameter that shall be confidential.
This set is denoted by who.

• We fix the “types” of actions the homomorphism µmaps onto: Let action(p1, . . . , pj) be an action
in Σ with pi being the parameter to be confidential. W.l.o.g. let pi = p1. Then the type of this
action is (action, p2, . . . , pj) and µ(action(p1, . . . , pj)) = ((action, p2, . . . , pj), p1). In other
words, µ keeps all parameters of the action except the one to be confidential which it extracts to
form the second component of the action’s image under µ. (Note that µ maps those actions that
can not be used to extract knowledge about the parameter value to ε.)

Having fixed this, the only information that is still needed is which is the parameter that we want to
be confidential (the messagem being sent/received, the data d being stored, the agentP performing
a specific action, etc.), and which are the actions that a malicious agent can use to gain knowledge
about the parameter to be confidential. We denote the parameter by par and the set of actions by
A(par).

©2011 by MASSIF Consortium 14 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

• Regarding the relations between actions that are allowed to be known by a malicious agent, we
will use languages L to denote all dependencies that must be assumed to be known. We should
for example assume that the agents know the relation between encryption and decryption with the
same shared secret. Later we may fix specific languages L.

Definition 6 (confidential) Let who ⊆ P be a subset of agents, par be the parameter whose value shall
only be known by the agents in who, and A(par) be the set of actions from which a malicious agent
can extract knowledge about the value of par. Let further M denote the possible values of par and
L denote the language that captures all the allowed relation knowledge between actions in the sense
explained above. Then conf(A(par), par,M,L, who) holds in B if M is parameter-confidential for
all P ∈ P \ who with respect to (L,M)–completeness according to Definition 15.

Definition of availability: The definition of the availability property is not finalized and therefore not
included in this deliverable.

©2011 by MASSIF Consortium 15 / 41

3 Security Requirements Elicitation Process

Information flow between systems and system components is highly complex, especially given that a
system can evolve via the replacement of its components. Consequently, an important aspect of secu-
rity evaluation is the analysis of the potential information flows. We use the analysis of the potential
information flows to derive the dependencies for the functional model.

For the description of the functional model from the use cases, an action-oriented approach is chosen.
The approach is based on the work in [7]. For reasons of simplicity and readability the formal description
of the model is omitted here and a graphical representation is used to illustrate the behaviour of the SIEM
target. Actions in SeMF represent an abstract view on actions of the real system. Thereby the semantics
of the actions of the real system is reduced to the interdependencies of these actions and ignores the
functionality of the actions. necessary step of abstraction that lies outside of the SeMF semantics. Within
SeMF we (currently) use the convention of a parameterized format consisting of the actions name, the
acting agent and a variable set of parameters:

actionName(actingAgent, parameter1, parameter2, ...)

In order to document this step of abstraction from reality to SeMF model and to reduce ambiguity, the
meaning of each of the SeMF actions should be defined accordingly.

3.1 Functional Model

A functional model can be derived from a use case description by identifying the atomic actions in the
use case description. These actions are set into relation by defining the functional flow among them.
This action oriented approach considers possible sequences of actions (control flow) and information
flow (input/output) between interdependent actions. Functional models that describe only parts of the
overall system behaviour will be called functional component model.

Figure 3.1 shows the functional component model for typical use cases in the dam scenario. To keep
the example clear only templates for real actions (sense, action) are used. The following agents and their
abbreviations are involved in the example:

• Control Station (CS)

• Monitoring Station (MS)

• Remote Terminal Unit (RTU)

The agents (P = {CS,MS,RTU}) are able to perform the following set of actions:

©2011 by MASSIF Consortium 16 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

• send(x, data), receive(x, data) with x ∈ P
Sending and receiving of data by the entities of the system.

• sense(RTU, S, v)
Reading of the current measurement v of the sensor S by the RTU .

• read(CS, t1, . . . tm)
Reading of the threshold values determining the execution of system actions.

• action(t1, . . . tm, (S1, v1), (S2, v2))
Execution of the system action action depending on the sensor values v1 and v2 an the threshold
values t1, . . . tm.

RTU

sense(S1, v1)

sense(S2, v2)

send((S1, v1), (S2, v2))

Monitoring Station

rec((S1, v1), (S2, v2)) send((S1, v1), (S2, v2))

Control Station

read(t1, . . . tm)

rec((S1, v1), (S2, v2))

action(t1, . . . tm, (S1, v1), (S2, v2))

Figure 3.1: Dam use case 1

This model is derived from example use cases given in deliverable D2.1.1 [12]. The arrows outside of
the components boundaries refer to functional flows between the components, whilst internal flow arrows
refer to flows within the same instance of the component. For the given example, the external flows
represent data transmission of one system to another, whilst the internal flows represent communication
within a single system.

3.2 Functional Security Requirements Identification

The functional component model is used in a next step to derive security requirements. First, the bound-
ary actions of the system model components are determined. Let the term boundary action refer to the
actions that form the interaction of the internals of the system with the outside world. These are ac-
tions that are either triggered by occurrences outside of the system or actions that involve changes to the
outside of the system.

With the boundary actions being identified, one may now follow the functional graph backwards.
Beginning with the boundary actions by which the system takes influence on the outside, we may propa-
gate backwards along the functional flow. These backwards references basically describe the functional

©2011 by MASSIF Consortium 17 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

dependencies of actions among each other. From the functional dependency graph we may now identify
the end points, namely the boundary actions that trigger the system behaviour that depends on them.
Between these and the corresponding starting points, the requirement exists that without such an action
happening as input to the system, the corresponding output action must not happen as well.

For the example depicted in Figure 3.1, the security requirement “The system must assure that all
(safety critical) actions using sensor data must only get authentic sensor data” was given.

This is a specific form of a more general security goal of the system at stake:
Whenever a certain output action happens, the input actions that presumably led to it must actually

have happened.
The formal derivation of security requirements from such kind of high-level goals is given in more

detail in [7].
In our case, this leads to the following SeMF precede property for the sensors (S), sensor values

(V), the threshold values (T), and the control station (CS):

∀Si ∈ S, ∀vi ∈ V, ∀tj ∈ T :

precede(sense(RTU, Si, vi) & read(CS, tj), action(CS, (S1, v1), . . . (Sn, vn), t1, . . . tm)

Coverage of Security Goals.

The original security goal was formulated related to the measured sensor data while the functional
dependency graph suggests also to include threshold values into the security goals and the derived
security requirements. This is one example for answer to the question whether uncovered security
goals are revealed.

According to the model domain and SIEM capabilities monitoring rules have to be developed. Fig-
ure 3.2 illustrates this process.

Hard and Soft Facts.

Monitoring rules directly deduce from assumptions given by hard facts of the domain knowledge.
”Soft facts” from the domain knowledge can be processes, guidelines etc.

In this case the monitoring rules are given by these facts and the assumptions have to be derived from
these rules. These assumptions have to be checked against the hard facts from the domain knowledge. In
either cases it has to proven that the combination of assumptions and monitoring rules fulfill the require-
ments. It has to be checked, whether the SIEM monitor capabilities match the monitoring rules. This
process is explained step by step in section 4.1.

©2011 by MASSIF Consortium 18 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Hard Facts

Soft Facts

SeMF

abstract properties
Security Goals

System Model
actions
agents

Functional Component Model

Requirements

Domain Knowledge
hard facts
soft facts

SIEM Capabilities
hard facts
soft facts

Assumptions

Monitoring Rules

Assumptions

Monitoring Rules

check against hard facts

Figure 3.2: Workflow of the requirements elicitation process

©2011 by MASSIF Consortium 19 / 41

4 Specification of Security Properties

In the following sections the elicitation of the classical security properties, authenticity, integrity, and
confidentiality will be demonstrated for selected use cases from the deliverable “D2.1.1 - Scenario Re-
quirements”.

4.1 Data Integrity in the Dam Scenario

Step 1: The security goals have to be identified.

• The system must assure that all (safety critical) actions using sensor data must only get authentic
sensor data.

Step 2: Identification of safety critical actions.

• Open/close penstock gate according to the parameters of the command received by the control
station.

Step 3: Identification of functional dependencies.
All actions related to information flow corresponding to the safety critical actions and their parameters
have to be gathered. In our example these dependencies are extracted from misuse case 6 of the dam sce-
nario. Figure 4.1 shows the dependency graph. The term sense(PPstate) represents the measurement of
voltage and current in the power grid. The power plant sends commands to the control station depending
on these measurements. The term sense(SDC, vdc) describes the measurement of the water discharge
on the penstock gates. The dashed line indicates that there is no direct functional dependency, but the
decision of the operator, which operation shall be triggered, depends on the displayed measurements.

Step 4: Now the actions that form the interaction of the internals of the system with the outside world
(blue nodes) have to be identified. In the following, these actions will be called boundary actions. As an
extension to the graphical representation, the actors will be included in all action statements in textual
form as first parameter.

• sense: discharge sensor (sense(RTU, SDCval))

• sense: Power plant state (sense(PP, PPstate))

• display of the control station:

– discharge level on the penstocks (SDCval)
– hydroelectric power plant operative (PPstate: current, voltage,...)

©2011 by MASSIF Consortium 20 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Powerplant

send(PPstate)

sense(PPstate)

send(PPcmd)

RTU

sense(SDCval)

send(SDCval)
Gate

exec(Gaction)

rec(Gaction)

sense(Gstate)

Control Station

rec(PPstate)

rec(PPcmd)

rec(SDCval) rec(Gstate)

display(PPcmd, PPstate, SDCval, Gstate)

send(Gaction)

Operator

Figure 4.1: Functional Dependencies

Step 5: The following parameters (assets) are used in our boundary actions:

• discharge sensors (SDC)

• discharge values (SDCval)

• power plant (PP)

• power plant operation PPstate

• penstock gate (G)

Step 6: Now in the next step the security requirements can be derived from the security goal related to
the identified boundary actions:

• The measurements displayed for the CS Administrator on the control station have to be authen-
tic for the gate system:

auth({sense(RTU, SDCvdc), sense(PP, PPstate), sense(G,Gstate},
display(CS,PPcmd, PPstate, SDCval, Gstate), CS Administrator)

• The sending of the command to the GATE has to be authentic:

auth(send(CS,Gaction), exec(G,Gaction), G)

©2011 by MASSIF Consortium 21 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Step 7: These requirements have to be matched with existing SIEM monitoring capabilities. It has
to be checked whether there is a domain knowledge, which can be set into relation with the security
requirements. It is assumed that the following SIEM monitoring capabilities related to the parameters of
our model are given:

1. state of the penstock gate

2. discharge sensor

3. power plant operation state (voltage, current...)

The following assumptions follow from the domain knowledge:

• discharge level is related to current produced by the power plant

• discharge level is related to penstock gate state

Step 8: Assessment of the developed monitoring capabilities must follow:

• Risk assessment related to the fulfillment of derived assumptions for the given monitoring capa-
bilities

• Evaluation whether further refinements are necessary

A refinement of the developed monitoring rules is always necessary, if the chosen abstraction level
prevents assignment of monitoring possibilities to assumption related to the given requirements. In other
cases depending on the underlying security measures this decision on the refinement process has to be
taken. For instance refinement will be necessary if hop-by-hop security measures are used, while end-
to-end security measures do not require further refinements.

Technical Integration. Technical integration of the presented approach has to be done. The specifica-
tion of the SeMF models will be integrated into the Eclipse development environment. Figure 4.2 shows
a screenshot of the specification of our current example. The further development of this Eclipse plugin
and of the interfaces to other MASSIF components will be done in the following work packages. This
editor will be part of the model management GUI.

4.2 Access Control in Dam Scenario

In the example presented in this section the requirement elicitation process will be skipped. The formal
requirement definition is directly derived from the textual definition. The main emphasis will be put on
the elicitation of monitoring rules and assumptions. Additional to the scenario deliverable the answers
of the scenario providers to the following questions build the basis for the presented analysis.

Question: Is there any role concept in the dam scenario for the execution of any actions?

©2011 by MASSIF Consortium 22 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Figure 4.2: Screenshot of a SeMF specification in Eclipse environment

Answer: A dam control system is usually provided with different operational roles. Usually these
roles include: Administrators of the control station (allowed to perform both monitoring and control
operations and also to modify settings and parameters), monitoring operators (allowed only to access the
monitoring data), and visualization roles provided with different levels of visualization rights over the
collected data.

Question: What actions are executed automatically and are there any actions which need human par-
ticipation?

Answer: This depends on the country that we take into account: while in Italy the law compels that all
the dams must be always supervised by a human operator and also that all the operations (i.e. opening
the gates) are carried out or at least supervised by a human operator, in other countries the law is less
strict and allows actuators to be controlled remotely, from the control station, allowing the creation of
totally unmanned dams.

Based on this information from the scenario partners, we analyse the following security goal:

©2011 by MASSIF Consortium 23 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Security Goal:

The system must assure that all (safety critical) actions are carried out or at least

supervised by a human operator. (G1)

Semi-formal description:
Beside the dam operators also other staff which might carry out other tasks in the control center is
modelled. P(set) defines the powerset of a set. Trigger defines the set entities which can cause
an action. The control center administrator will be an element of this set.

Supervisors = CS Administrators ∪Monitoring Operators
StaffSupervisors = P(Supervisiors)
Staffall = P(Supervsiors ∪Other Staff)
Trigger = {Other Entity} ∪ CS Administrators
Actions = Actionssupervised ∪Actionsexec by operator

Agents and SeMF Actions:
P = Staffall
Σ = {execute(A, T,X)|A ∈ Actions, T ∈ Trigger,X ∈ Staffall}
The parameter T stands for the entity starting the action A, X is the set of persons present in the
control center.

Requirements:

not happens({execute(Actionssupervised, X, S)|(S ∩ Supervisors) = {}} (R1)

not happens({execute(Actionsexec by operator, X, Y)

| X /∈ {CS Administrator} ∧X ∈ Y }) (R2)

The conditions for the fulfillment of R2 will be investigated in the following part of this section.

SIEM monitoring possibilities (related to parameters of the security requirements):
Enter / leave control center using a RFID badge.
Login / logout control center workstation

Domain Knowledge (related to parameters of the security requirements):
According to the model domain assumptions related to the requirements have to defined. The
domain knowledge can be classified as follows:

• Hard facts with low risk.

• Soft facts with medium risk, e.g. processes controlled by technical measures, policies, etc.

• Workflows, processes, guidelines, e.g. not enforced by technical measures with high risk

These facts together with the requirements define properties of our system model. Hard facts di-
rectly imply assumptions for our system model, while assumptions for soft facts need to be derived,
which will be explained on our example. If hard facts can be monitored, violation of these facts
implies that related assumptions derived from soft facts and the corresponding requirements are
broken. SeMF provides techniques for reasoning on these system properties to check whether the

©2011 by MASSIF Consortium 24 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

requirements are fulfilled under the given assumptions. The classification of the domain knowl-
edge does not act as a part in this reasoning. A separate risk assessment will be needed, to decide
whether facts will be classified as hard or soft facts.

A possible classification of the domain knowledge to the given requirements would be:

Hard fact: Actions to be executed by CS Administrators are only possible after login by
CS Administrator.

Hard fact: Only people with valid RFID Badge can enter the control center.

Soft fact: Login of CS Administrators is only possible with physical presence in the control
center.

Workflow/guideline: CS Administrators will logout before leaving the control center.

The assumptions have to be formalised using SeMF predicates:

not happens({execute(Actionssupervised, X, S)

| X ∈ Staffall ∧X /∈ CS Administrators ∧ (S ∩ CS Administrators) 6= {}}

This formula expresses the fact that if a CS Operator is logged in and is physically present in
the control center no one else can execute actions with his permissions. Further assumptions (here
only given informal) are necessary:

1. Actions to be executed can only be executed after successful login of a CS Administrator

2. Login is only possible in the phase of entering and leaving the control center.

3. The administrator logs out before leaving the control center.

The guideline for the administrator could be given by the UML state diagram Figure 4.3.

For the formal definition of these assumptions the phase definition provided in [8] can be used. The
proof of the requirements with the given assumptions will be possible. But a monitor automaton
constructed on the base of the UML diagram 4.3 would also produce false positives, because the
assumptions are only sufficient conditions for the requirements. To exclude false positives and get
necessary conditions, a second proof is necessary:

¬Monitoring Rule =⇒ ¬Requirement

which can be transformed to:

Requirement =⇒ Monitoring Rule

The monitor automaton Figure 4.4 describes the assumptions necessary to prove.

State S4 and S5 are not part of the monitor automaton and are used to illustrate the possible
exceptions and possible mitigation strategies.

©2011 by MASSIF Consortium 25 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

enteredentered

sessionsession

endsessionendsession

action

enter

login

logout

leave

Figure 4.3: UML state diagram of the behaviour of the control station administrator (CSA)

S1start

S2

S3

S4

S3

enter(CSA)

login(CSA)

leave(CSA)

login(CSA)

action(CSA)

logout(CSA)

leave(CSA)

Figure 4.4: Monitor automaton for the control station administrator (CSA)

©2011 by MASSIF Consortium 26 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Traceability.

These exceptions would cause security events and are the answer to the question “Which secu-
rity requirements and associated security goals are broken by current security event measure-
ments ?”. The linkage between these events, the security requirement R2 with the corresponding
assumptions the security goal G1 was developed in the presented process.

So the requirements and assumptions imply monitoring rules given by state S1 . . .S3 of the au-
tomaton. The violation of a monitoring rule implies that a requirement does not hold or an assump-
tion is broken. The proof could also be conducted with the following weaker assumption instead
of assumption 3:

• No one except the control station administrators is allowed to enter the control center if an
administration session is active but no administrator is present.

• The control center administrator is not allowed to leave the control center during active ses-
sion when other staff is present in the control center.

The following monitor automaton (Figure 4.5) can be derived from these assumptions:

S1start

S2

S3

S4

S5 S6

S7 S8

S9

S9

enter(CSA) enter(X)

leave(CSA)

login(CSA)

enter(X)

action(CSA)

logout(CSA)

leave(CSA)

enter(X)

enter(CSA)

enter(X)

leave(X)

leave(CSA)

login(CSA)

enter(CSA)

leave(X)
action(X)

leave(X)

logout(CSA)

action(CSA)

leave(CSA)

Figure 4.5: Monitor automaton w.r.t. the control station staff

This automaton monitors the necessary conditions for the given requirements. The red states s8
and s9 are not part of the monitor automaton and are used to illustrate some possible exceptions.
An assessment whether appropriate mitigation techniques are available for exceptions of this mon-
itor automaton is necessary. The implementation of technical measures to prevent exceptions or

©2011 by MASSIF Consortium 27 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

defining “stronger” assumptions could be the consequence if mitigation possibilities are not ade-
quate.

Information Needs.

The question “Which information must the SIEM sensors provide and which additional assump-
tions to the environment are necessary in order to verify the given requirements ?” is answered
in this section. The lack of SIEM monitoring capabilities would prevent the derivation of as-
sumptions necessary for the reasoning process.

4.3 Data Access Isolation in the Olympic Games Scenario

Data access isolation between users is a security goal with high priority in the Olympic Games scenario.
Figure 4.6 shows the information flow and the functional dependencies assigned to the components pre-
sented in the high level architecture diagram from the scenario description in [12]. Data access isolation
is formalised using the SeMF properties auth and conf with the agents, Core Game System (CGS) user
(CGSU), other CGS other user (CGSO) remote info user (RIU), other remote info users (RIO), and the
Primary Data Centre (PDC) provider (A).

The set of agents is defined as follows:

P := {CGSU , CGSO, RIU , RIO, A}

Data delivered by customer CGSU has to be delivered to remote info user RIU . M(d) is the set
which is indistinguishable related to customer data d, whileA(d) describes the actions out of the alphabet
Σ where customer data does occur as a parameter:

A(d) := {a ∈ Σ | d ∈ params(a)}

The trigger actions for the predicate authenticity property auth are the provision of data by the PDC
provider A and the delivery of user data to the PDC system:

∀d ∈M(d) : auth({send(CGSU , d), provide(A, (CGSU , data)}, rec(CGSU , d), CGSU)

∀d ∈M(d) : auth({send(CGSU , d), provide(A, (CGSU , data)}, rec(RIU , d), RIU)

These actions have to be authentic for the CGS user CGSU and for the remote info system user RIU .
The boundary action are shown in blue in Figure 4.6. The auth predicate defines that in each trace of
actions one of the trigger actions must have happened before the customer or remote info user receives
data. For the definition of confidentiality the set who

who := P \ {CGSO, RIO}
conf(A(d), d,M(d),Lmax, who)

©2011 by MASSIF Consortium 28 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

CGSO
RIO

Primary Data Center PDC

CGSO

Internet CGS Users

send(data)

rec(data)
CGSU

Remote Info Users

rec(data)

RIU

CGS

send(data)

rec(data) send((CGSU , data))

rec((CGSU , data))

Info System

provide((CGSU , data))

send((CGSU , data))

read((CGSU , data))rec((CGSU , data))

store((CGSU , data))

send((data)

CGS Users

send(data)

rec(data)
CGSU

Figure 4.6: Data flow user data

Lmax defines the language that allows malicious agents to know about all relations between occur-
rences of the confidential parameter d. Note that this language will differ for every property instance.

The next step would be to analyse monitoring capabilities to derive the necessary assumptions for
the reasoning process. Further refinement of the coarse high level description of the Olympic Games
scenario is necessary for this process. As a first step used assets from the use case should be mapped to
the architecture. E.g. it is not possible to locate the central database system (GMS) in the architecture.
In order to define suitable assumptions, monitoring would be necessary for:

• Database activity

• Identity monitoring

• Monitoring of user activity

• Monitoring of accreditation and workforce management

©2011 by MASSIF Consortium 29 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Sufficiency of Monitoring Capabilities

Assumptions have to be derived from monitoring capabilities for reasoning whether the given require-
ments are fulfilled under these assumptions. This reasoning process can’t be successful if monitoring
capabilities are insufficient or can’t be assigned to entities used in the current abstraction level of the
system model. The requirements cannot be measured by the given SIEM information sources.

©2011 by MASSIF Consortium 30 / 41

5 Conclusion

In this deliverable we described a method to identify abstract security requirements from given high-level
generic security goals. We showed that this formal representation of security requirements is necessary
for different reasoning processes in MASSIF. We addressed questions like “Which security goals are
not covered by security requirements ?”, “Which information must the SIEM sensors provide in order
to verify the given requirements ?”, and “Which requirements cannot be measured by the given SIEM
information sources ?” during configuration time, as well as runtime questions like “Which security
requirements and associated security goals are broken by current security event measurements ?”.

In order to support the answering of theses questions, we demonstrated, how a complete set of se-
curity requirements for a given high-level security goals can be elicited. Furthermore, we showed, how
the derived security requirements from the analysed MASSIF scenarios can be formalised using the
proposed property-based characterisation of security requirements in the security modelling framework
SeMF. This is the first step in the reasoning chain to answer the above questions.

For runtime analysis, a backward chaining of the reasoning starting with the measured security in-
formation via the broken security requirement to the broken security goal is proposed. The missing steps
in the reasoning chain, namely the derivation of measurement requirements from the abstract security
requirements will be subject of a forthcoming deliverable.

The application of the proposed concepts was performed for several MASSIF use cases based on
the respective scenario descriptions taken from D2.1.1 [12]. For these use cases the elicitation of moni-
toring rules and derivation of corresponding assumptions was sketched. This builds the base to support
reasoning whether the combination of monitoring rules and assumptions fulfill these requirements.

The next steps will b to apply so called security building blocks in the monitoring rule elicitation
process and reasoning. The dashed lines in Figure 5.1, which is a refined version of Figure 3.2, illustrate
these steps of consecutive work. The main steps will be:

• Continuation in development of sketched approach for monitoring rule elicitation.

• Definition of building blocks for reasoning.

• Derivation of an executable model from the system model and domain description to enable pre-
dictive analysis.

• Transformation of monitoring rules to a representation usable for monitoring of predictive analysis
results.

©2011 by MASSIF Consortium 31 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Hard Facts

Soft Facts

SeMF

abstract properties
Security Goals

System Model
actions
agents

Functional Component Model

Requirements

Domain Knowledge
hard facts
soft facts

SIEM Capabilities
hard facts
soft facts

Assumptions

Monitoring Rules

Assumptions

Monitoring Rules

Executable Process Model

Repository

Monitor Automata

check against hard facts

Figure 5.1: Workflow of the monitoring rule elicitation process

©2011 by MASSIF Consortium 32 / 41

Bibliography

[1] Serenity, system engineering for security & dependability. www.serenity-project.org, 2006.

[2] Evita,e-safety vehicle intrusion protected applications. www.evita-project.org/, 2010.

[3] M. Abadi and M.R Tuttle. A Semantics for a Logic of Authentication. In Tenth Annual ACM
Symposium on Principles of Distributed Computing, Montreal, Canada, pages 201–216, August
1991.

[4] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, 7 October 1985.

[5] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions on
Computer Systems, 8, 1990.

[6] Andreas Fuchs, Sigrid Gürgens, and Carsten Rudolph. A Formal Notion of Trust – Enabling Rea-
soning about Security Properties. In Preceedings of Fourth IFIP WG 11.1 International Conference
on Trust Management, 2010.

[7] Andreas Fuchs and Roland Rieke. Identification of Security Requirements in Systems of Systems
by Functional Security Analysis. In Antonio Casimiro, Rogério de Lemos, and Cristina Gacek,
editors, Architecting Dependable Systems VII, volume 6420 of Lecture Notes in Computer Science,
pages 74–96. Springer, 2010.

[8] R. Grimm and P. Ochsenschläger. Binding Cooperation, A Formal Model for Electronic Commerce.
Computer Networks, 37:171–193, 2001.

[9] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Parameter confidentiality. In Informatik 2003 -
Teiltagung Sicherheit. Gesellschaft für Informatik, 2003.

[10] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Abstractions preserving parameter confidentiality.
In European Symposium On Research in Computer Security (ESORICS 2005), pages 418–437,
2005.

[11] K. Dolinar, A. Fuchs, S. Gürgens, C. Rudolph. A3.D2.2 - S&D requirements for networks and
devices. Technical report, SERENITY-Project, 2008.

[12] Marc Llanes, Elsa Prieto, Rodrigo Diaz, , Luigi Coppolino, Antonio Sergio, Rosario Cristaldi, Mo-
hammed Achemlal, Said Gharout, Chrystel Gaber, Andrew Hutchison, and Keiran Dennie. Sce-
nario requirements. Technical Report Deliverable D2.1.1, MASSIF Project, 2011.

©2011 by MASSIF Consortium 33 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

[13] L.C. Paulson. Proving Properties of Security Protocols by Induction. Technical Report 409, Com-
puter Laboratory, University of Cambridg, 1996.

[14] G. Wedel and V. Kessler. Formal Semantics for Authentication Logics. In Computer Security -
Esorics 96, volume 1146 of LNCS, pages 219–241, 1996.

©2011 by MASSIF Consortium 34 / 41

6 Appendix A

6.1 SeMF Property Definitions

Authenticity with Respect to a Phase

In many cases it is not only necessary to know who has performed a particular action, but also the
specific “time” of the action is important. As our specification is discrete and does not model any real
time properties, time is modeled in terms of relations between actions in a sequence. However, an explicit
model of discrete time can be easily included in the model.

We use the definition of a phase provided in [8]. A phase V ⊂ Σ∗ is a prefix closed language
consisting only of words which, as long as they are not maximal in V , show the same continuation
behaviour within V as withinB. Maximal words in a phase are those that lead out of the phase, i.e. those
v ∈ V for which exists ω, u ∈ B with ω = uv such that for all a ∈ Σ with ωa ∈ B holds va 6∈ V .

Definition 7 Let B ⊆ Σ∗ be a system. A prefix closed language V ⊂ Σ∗ is a phase in B if the following
holds:

1. V ∩ Σ 6= ∅

2. ∀ω ∈ B with ω = uv and v ∈ V \ (max(V) ∪ {ε}) holds: ω−1(B) ∩ Σ = v−1(V) ∩ Σ

Thus a phase as defined above is essentially a part of the system behaviour that is closed with respect
to concatenation. In analogy to the maximal words of a phase we define the minimal words of a phase as
all v ∈ V with |alph(v)| = 1.

A phase can be a very complex construct. However, in many cases phases are of interest that can be
defined by their starting and ending actions. Since an action can occur more than once in a word, it is not
sufficient to identify the starting and terminating actions for determining where a particular phase starts
and where it ends. The following definition takes this into account.

Definition 8 Let s1, . . . , sk, t1, . . . , tl ∈ Σ be actions. Then V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}) (with
j1, . . . , jl ∈ IN) defines a phase in B that starts with actions s1, . . . , sk and terminates with actions
t1, . . . , tl in the following sense:

• For all ω ∈ B for which exists sj ∈ {s1, . . . , sk} such that ωsj ∈ B follows sj ∈ V ({s1, . . . , sk},
{t1(j1), . . . , tl(jl)}) (i.e. sj is minimal in V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)})).

• For all ω ∈ B for which exists ti(ji) ∈ {t1(j1), . . . , tl(jl)} and u, v ∈ Σ∗ with ω = uvti,
vti ∈ V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}), and card(ti, vti) = ji follows that vti is maximal in
V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}).

©2011 by MASSIF Consortium 35 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

In the above definition, the starting action(s) need to be fixed so that starting from these the terminat-
ing actions occuring in the phase can be counted in order to identify those ones that actually terminate
the phase. In the following definition, we conversely fix the termination action(s) and count the number
of occurences of the starting action(s) backwards in the phase to identify the actual start(s) of the phase:

Definition 9 Let s1, . . . , sk, t1, . . . , tl ∈ Σ be actions. Then V ({s1(i1), . . . , sk(ik)}, {t1, . . . , tl}) ⊆ B
(with i1, . . . , il ∈ IN) defines a phase in B that starts with actions s1, . . . , sk and terminates with actions
t1, . . . , tl in the following sense:

• For all ω ∈ B for which exists sj(ij) ∈ {s1(i1), . . . , sk(ik)} such that ωsj ∈ B follows sj ∈
V ({s1(i1), . . . , sk(ik)}, {t1, . . . , tl}) (i.e. sj is minimal in V ({s1(i1), . . . , sk(ik)}, {t1, . . . , tl}))
and card(sj , v) = ij for all maximal words v ∈ V ({s1(i1), . . . , sk(ik)}, {t1, . . . , tl}).

• For all ω ∈ B for which exists ti ∈ {t1, . . . , tl} and u, v ∈ Σ∗ with ω = uvti, vti ∈ V ({s1(i1), . . . ,
sk(ik)}, {t1, . . . , tl}), follows that vti is maximal in V ({s1(i1), . . . , sk(ik)}, {t1, . . . , tl}).

In some cases we are not interested in how often each of the ending actions occurs within the phase
but we want to fix the number of occurences of any of them.

Definition 10 Let s1, . . . , sk, t1, . . . , tl ∈ Σ be actions. Then V ({s1, . . . , sk}, {t1, . . . , tl}(j)) ⊆ B
(with j ∈ IN) defines a phase inB that starts with actions s1, . . . , sk and terminates with actions t1, . . . , tl
in the following sense:

• For all ω ∈ B for which exists sj ∈ {s1, . . . , sk} such that
ωsj ∈ B follows sj ∈ V ({s1, . . . , sk}, {t1, . . . , tl}(j))
(i.e. sj is minimal in V ({s1, . . . , sk}, {t1, . . . , tl}(j))).

• For all ω ∈ B for which exists ti ∈ {t1, . . . , tl} and u, v ∈ Σ∗ with
ω = uvti, vti ∈ V ({s1, . . . , sk}, {t1, . . . , tl}(j)),
and card({t1, . . . , tl}, vti) = j follows that vti is maximal in V ({s1, . . . , sk}, {t1, . . . , tl}(j)).

While in many cases we are able to identify the last action(s) of a phase, in some cases we may know
only the first action(s) that occur outside the phase. The next definition allows to specify a phase using
these actions.

Definition 11 Let s1, . . . , sk, t1, . . . , tl ∈ Σ be actions, and let p1, . . . , pl be parameters with values
∈ {in, ex}. Then V ({s1, . . . , sk}, {t1(j1, p1), . . . , tl(jl, pl)}) ⊆ B (with j1, . . . , jl ∈ IN) defines a phase
in B that starts with actions s1, . . . , sk and terminates with actions t1, . . . , tl in the following sense:

• For all ω ∈ B for which exists sj ∈ {s1, . . . , sk} such that ωsj ∈ B follows
sj ∈ V ({s1, . . . , sk}, {t1(j1, p1), . . . , tl(jl, pl)}) (i.e. sj is minimal in V ({s1, . . . , sk}, {t1(j1,
p1), . . . , tl(jl, pl)}).

• For all ω ∈ B for which exists ti(ji, in) ∈ {t1(j1, p1), . . . , tl(jl, pl)} and u, v ∈ Σ∗ with ω =
uvti, vti ∈ V ({s1, . . . , sk}, {t1(j1, p1), . . . , tl(jl, pl)}), and card(ti, vti) = ji follows that vti is
maximal in V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}).

• For all ω ∈ B for which exists ti(ji, ex) ∈ {t1(j1, p1), . . . , tl(jl, pl)} and u, v ∈ Σ∗ with
ω = uvti, v ∈ V ({s1, . . . , sk}, {t1(j1, p1), . . . , tl(jl, pl)}), and card(ti, v) = ji follows that
v is maximal in V ({s1, . . . , sk}, {t1(j1), . . . , tl(jl)}).

©2011 by MASSIF Consortium 36 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

In other words, if the number of occurences of a terminating action is accompanied by the parameter
in, the action is part of the phase. If it is accompanied by ex, it is the first action after the phase’s
termination.

Definition 12 (Authenticity with respect to a phase) A set of actions Γ⊆ Σ is authentic for agent P ∈
P after a sequence of actions x ∈ B with respect to WP and a phase V if it is authentic for P after x and
for all y ∈ λ−1

P (λP (x))∩WP) exists u, v, w ∈ Σ∗ such that y = uvw and v ∈ V and alph(v)∩ Γ 6= ∅.
Γ is currently authentic for P after x if w = ε.

The above definition can be used to specify the security property provided by e.g. an SSL channel:
data origin authenticity and freshness. The concept of a phase is used to model the duration of the SSL
channel: The phase starts with the establishment of the channel by receiving the last handshake message
(from the server’s point of view), and ends by terminating the SSL channel (e.g. by deleting the respective
session key). Each message exchanged on the channel is both performed within the phase represented
by the channel and authentically generated by the server and the client, respectively.

Proof of Authenticity

Some actions do not only require authenticity but also need to provide a proof of authenticity (non-
repudiation of receipt etc.). Usually, some evidence of the occurrence of a particular action is provided
as “proof”. Different types of proofs are possible: transferable, non-transferable, proofs that can get lost,
etc. The following describes transferable proofs with the additional assumption that one cannot lose the
proofs. Other requirements can be defined in a similar way.

If agent Q owns a proof of authenticity for a set Γ of actions we assume it can send this proof to
other agents, which in turn can receive the proof and be convinced of Γ’s authenticity. In the following
definition the set ΓP denotes actions that provide agents with proofs about the authenticity of Γ. An
agent Q can use the forwarding actions from ΓS in order to present the proof to other agents, that in turn
can use the actions from ΓP to validate the authenticity of Γ.

Definition 13 (Proof of authenticity) A pair (ΓS,ΓP) with ΓS ⊆ Σ and ΓP ⊆ Σ is a pair of sets of
proof actions of authenticity for a set Γ ⊆ Σ on B with respect to (WQ)Q∈P if for all ω ∈ B and for all
Q ∈ P with alph(πQ(ω)) ∩ ΓP 6= ∅ the following holds:

1. For Q the set Γ is authentic after ω and

2. for each R ∈ P there exist actions a ∈ Σ/Q ∩ ΓS and b ∈ Σ/R ∩ ΓP with ωab ∈ B.

Agent Q ∈ P can give proof of authenticity of Γ ⊆ Σ after a sequence of actions ω ∈ B if 1 and 2 hold.

In addition to agent Q and set of actions Γ we have to specify the set of actions after which proof of
authenticity for Q shall hold.

Note that we do not specify actions for forwarding of proofs and receiving of forwarded proofs in
our example because such actions might happen outside the specified system. Thus these actions are not
explicitly included in the properties described below. However, in order to prove that these properties
hold, the forwarding and receiving of proofs can easily be added.

©2011 by MASSIF Consortium 37 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Parameter Confidentiality

Parameter confidentiality essentially captures the following: Consider agentR has monitored a sequence
of actions ω, and in some of these actions a parameter p occurs with a specific value. ThenR must not be
able to distinguish this sequence from any other sequence in which the parameter occurs with different
values, even if knowing all possible values.

Consider as an example a system consisting of three active nodes and an end user. Sensor1 and
Sensor2 are nodes deployed somewhere in the system. They perform measurements (e.g. measure the
water level in the dam scenario) and send the resulting data over the network. MS is the third node of
the system. It receives data from the network and displays them to the end user User (e.g. the operator
of the monitoring station MS) . Let us assume that the communication channel between the monitoring
stataion and the sensors is secured using a digital signature scheme. Hence we may want to require that
a sensor’s signature key shall be confidential to all other agents. Now assume that Sensor1 generates
and sends a signature and MS receives, verifies and accepts this signature, modeled for example by
send(Sensor1, data, privK1, sigj(data)) recv(MS, data, pubK1, sigj(data)). When monitoring this
sequence, Sensor2 and the display shall not be able to deduce the actual private key that was used
even if knowing the key’s length and thus all possible values. This property can be expressed with our
notion of parameter confidentiality and we will explain it further using the requirement of privK1 to be
confidential to the display.

Various aspects are included in this definition. First, one has to consider MS’s view of the sequence
ω it has monitored and thus the set λ−1

MS(λMS(ω)) of sequences that are, from MS’s view, identical.
We assume a network bus connection which allows all agents to see their own actions and the data
and signature of actions performed by other agents, but not the sender and the signature key used. The
display’s local view λMS of the sequence above is then λMS(send(Sensor1, data, privK1, sigj(data))
recv(MS, data, pubK1, sigj(data))) = send(data, sigj) recv(MS, data, pubK1, sigj(data). The set
λ−1
MS(λMS(send(Sensor1, da ta, privK1, sigj(data)) recv(MS, data, pubK1, sigj(data)))) of the

sequences of actions that are from the display’s view identical consists of sequences send(P, data, privKi,
sigj(data

′)) recv(MS, data, pubK1, sigj(data)) with privKi denoting possible key values, P denot-
ing any possible sender, and data, data′ denoting possible values of the parameter data.

Second, MS can discard some of the sequences from this set, depending on its knowledge of the
system and the system assumptions, all formalised in WMS . There may for example exist interdepen-
dencies between parameters in different actions, such as the public key used for a signature’s verifi-
cation determining the private key used for its generation. In consequence, MS considers only those
sequences of actions possible in which its own receive action, including verification and acceptance
of the signature, is always preceded by a signature generation and send action which uses the match-
ing signature key and data. So the set of sequences MS considers to have possibly happened after
ω has happened is reduced to λ−1

MS(λMS(ω)) ∩ WMS . In the example this set consists of sequences
send(P, data, privKi, sigj(data)) recv(MS, data, pubK1, sigj(data)), with MS knowing that there
is a relation between the public key pubK1 used for verification of the signature and privKi but not
being able to deduce the actual value of privKi.

Third, those actions have to be identified in which the respective parameter(s) shall be confidential,
or in other words, the actions from which a monitoring agent can possibly learn the parameter’s value.
Usually many actions are independent from these and do not influence confidentiality, thus need not be
considered. In the example, it is the send action that contains privKi and from which MS can learn
its value but the sensing and display actions are not relevant regarding the confidentiality of Sensor1’s

©2011 by MASSIF Consortium 38 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

signature key. We formalise this by using a homomorphism µ that maps all actions of interest for the
particular confidentiality property onto what we call the action type while at the same time extracting
the parameter to be confidential, and that maps all other actions onto the empty word. In the exam-
ple, we define µ(send(Sensori, data, privKi, sigj(data))) = (send(Sensori, data, sigj), privKi)
and µ(action) = ε for all other actions action.

Essentially, parameter confidentiality is captured by requiring that for actions that shall be confiden-
tial for an agent with respect to some parameter p, all possible (combinations of) values for p occur in
this set. What are the possible combinations of parameters is the fourth aspect that needs to be specified,
as one may want to allow the agent to know some of the interdependencies between parameters (e.g. it
may be allowed to know the relation between signature and verification key). The notion of (L,M)–
Completeness captures which are the allowed dependencies within a set of sequences of actions.

We define L to be a formal language that consists of sequences of pairs (action type,number) where
action type are the types of actions that are kept by µ and the numbers are used to identify those actions
whose relation between the parameters is allowed to be known. We extend the example and add a further
send action by Sensor1, resulting in
ω = send(Sensor1, data

′, privK1, sigi(data
′)) send(Sensor1, data, privK1, sigj(data))

recv(Displ, data′, pubK1, sigi(data
′)) recv(Displ, data, pubK1, sigj(data)). Now MS owns the

sensor’s public key and thus knows (and is allowed to know) that Sensor1 always uses the same pri-
vate key. On the other hand, Sensor2 does not own pubK1, and if we assume that it does not know
that Sensor1 always uses the same key, even if data indicates who is the message’s sender, Sensor2

should not be able to distinguish one send action from another. Hence for describing the confidentiality
requirement of the display we assign all send actions the same number, hence LMS contains sequences
(send(Sensor1, data, sigi), k)(send(Sensor1, data, sigj), k). Addressing the confidentiality require-
ment of Sensor2 we assign different numbers to the send actions which results in a different language
LSensor2 that contains sequences such as (send(Sensorx, data, sigi), k)(send(Sensorx, data, sigj), l).
Then functions f are used to map these numbers to the setM of possible parameter values. The resulting
set of action sequences contains all possible combinations of parameter values with the constraint that
actions related with respect to the the parameter contain the same parameter value. Such a set of action
sequences is called (L,M)–complete.

For the formal definition of (L,M)–completeness, some additional notations are needed: For
f : M −→M ′ and g : N −→ N ′ we define
(f, g) : M × N −→ M ′ × N ′ by (f, g)(x, y) := (f(x), g(y)). The identity on M is denoted by
iM : M −→ M , while M IN denotes the set of all mappings from IN to M , and p1 : (Σt ×M) −→ Σt

is a mapping that removes the parameters.

Definition 14 Let L ⊆ (Σt × IN)∗ and let M be a set of parameters. A language K ⊆ (Σt ×M)∗ is
called (L,M)–complete if

K =
⋃

f∈MIN
(iΣt , f)(L)

The definition of parameter confidentiality captures all the different aspects described above:

Definition 15 (Parameter Confidentiality) Let M be a parameter set, Σ a set of actions, Σt a set of
types, µ : Σ∗ → (Σt ×M)∗ a homomorphism, and L ⊆ (Σt × IN)∗. Then M is parameter-confidential
for agent R ∈ P with respect to (L,M)-completeness if there exists an (L,M)–complete language
K ⊆ (Σt ×M)∗ with K ⊇ µ(WR) such that for each ω ∈ B holds

©2011 by MASSIF Consortium 39 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

µ(λ−1
R (λR(ω)) ∩WR) ⊇ p−1

1 (p1(µ(λ−1
R (λR(ω)) ∩WR))) ∩K

Here p−1
1 ◦ p1 first removes and then adds again the parameters that shall be confidential, i.e. con-

structs all possible value combinations. (L,M)–completeness ofK captures exactly that we requireR to
consider all combinations of parameter values possible except for those that we allow to be disregarded.
Hence the right hand side of the inequality constitutes all sequences of actions we require R to consider
to have possibly happened after ω has happened, while the left hand side constitutes those sequences R
actually does consider to have possibly happened. For further explanations we refer the reader to [9, 10].

Enforcing system behaviour

Some security requirements are concerned with enforcing specific system behaviour, i.e. with not allow-
ing certain other system behaviour. Requiring authenticity of action a whenever action b has happened
is one particular instantiation of enforcing system behaviour. However, other required behaviour needs a
more general definition.

Definition 16 (enforce-behaviour) For an alphabet Σ, let L ⊆ Σ∗ describe particular requirements
and B ⊆ Σ∗ be the actual system.
We say that L enforces its behaviour on B, denoted by enforce-behaviour(L,B), if B ⊆ L.

Trust

Trust assumptions play an important role for the verification of system properties. When for example
using a PKI we need to trust in the authenticity of the Trusted Third Party’s public key when verifying
certificates. When using trusted computing technology we need to trust that the TPM indeed provides
certain security properties, etc. Hence our Security Modelling Framework includes the concept of trust.
Within SeMF, we will use the following trust concept:

The term trust refers to a relation from one agent in the system to another agent with respect to a
property, or from an agent directly to a property in the system. Thus, agents can have three slightly
different types of trust:

1. Agents can trust that some (global) property holds in a system.

2. Agents can trust that another agent behaves in a certain way, i.e. that a property concerning the
behaviour of this other agent is satisfied.

3. Agents can trust that another agent has a particular trust.

Being a relation, this notion of trust cannot be used to express different degrees of trust. Agents can
either trust or not trust. See [6] for a more detailed discussion on our trust concept.

In order to provide the formal definition, we first introduce the definition of a system and a trusted
system, both using the concepts introduced in Section 2.1.2.

Definition 17 (System) A system S = (Σ,P, B,W,V) consists of a set P of agents acting in the system,
a languageB ⊆ Σ∗ over an alphabet of actions Σ describing the system behaviour in terms of sequences
of actions, a set V = {λX : Σ∗ → (ΣX)∗|X ∈ P} of agents’ local views, and a set W = {WX ⊆
Σ∗|X ∈ P} of agents’ initial knowledges.

©2011 by MASSIF Consortium 40 / 41

MASSIF - FP7-257475

D4.2.1 - Formal Specification of Security Properties

Here (ΣX)∗ denotes the image of the homomorphism λX which has to be individually specified for
each system. Which part of an action an agent can see depends on the specific system to specify and can
contain any part of it, as indicated in the previous section.

An agent P ’s conception and understanding of a system S, denoted by SP , may differ from the actual
system. P may not know all about the system’s behaviour, thus from P ’s point of view the system’s
behaviour consists of P ’s initial knowledge WP . Further, P may not have all information with respect
to the other agents’ initial knowledges and local views, so P ’s conception of agents’ initial knowledges
(WXP) and local views (λXP) may differ from the actual initial knowledges and local views of the
system S. This motivates the following definition.

Definition 18 (Trusted System) Agent P ’s conception of system S is defined by SP = (Σ,P,WP ,
WP ,VP). Σ and P are the alphabet and set of agents, respectively, of both S and SP , whereas P ’s
initial knowledge (conception) WP ⊆ Σ∗ of system behaviour B constitutes the behaviour of SP . It
further contains a set VP = {λXP : Σ∗ → (ΣXP)∗|X ∈ P} of agent P ’s conception of agents’ local
views of S, and a set WP = {WXP ⊆ Σ∗|X ∈ P} of agent P ’s conception of agents’ initial knowledges
in S. We say that P trusts in system SP (since it represents P ’s knowledge about system S).

The definition of an agent’s trusted system gives rise now to the definition of an agent’s trust in a
property holding in a system:

Definition 19 (Trusted Property) Let prop be any property that refers to a system as defined in Defini-
tion 17. An agent P ∈ P trusts in prop to hold in a system S, denoted by trust(P, prop), iff prop is fulfilled
in SP .

This notion of trust follows naturally from the different aspects that constitute the model of a system.
If a property holds in the system as P perceives it (i.e. in SP), then from P ’s point of view the property
holds, i.e. P trusts in the property to hold in S. Further the notion of trust allows to specify precisely
what it is an agent trusts in. An agent may have trust in one property but not in another. Of course, trust
itself is a property of a system as well. Therefore the trust concept allows to model arbitrarily long trust
chains such that e.g. the trust of an agent in another agent’s trust in a property can be expressed.

©2011 by MASSIF Consortium 41 / 41

	Introduction
	Deliverable Context
	Deliverable Content

	Security Properties
	The Security Modelling Framework SeMF
	Formal Languages
	Agents' Local Views and Initial Knowledges
	Agents' Knowledge about the Global System Behaviour
	Agents' View of the Global System Behaviour

	Basic Property Definitions
	Authenticity
	Integrity
	Confidentiality

	Specific Property Instantiations

	Security Requirements Elicitation Process
	Functional Model
	Functional Security Requirements Identification

	Specification of Security Properties
	Data Integrity in the Dam Scenario
	Access Control in Dam Scenario
	Data Access Isolation in the Olympic Games Scenario

	Conclusion
	Appendix A
	SeMF Property Definitions
	Authenticity with Respect to a Phase
	Proof of Authenticity
	Parameter Confidentiality
	Enforcing system behaviour
	Trust

