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In-Vehicle Intrusion Detection
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Kotenko

Abstract Growing connectivity of vehicles induces increasing attack surfaces and
thus the demand for a sophisticated security strategy. One part of such a strategy is to
accurately detect intrusive behavior in an in-vehicle network. Therefore, we built a
log analyzer in C that focused on payload bytes having either a small set of different
values or a small set of possible changes. While being an order of magnitude faster,
the accuracy of the results obtained is at least comparable with results obtained using
standard machine learning techniques. Thus, this approach is an interesting option
for implementation within in-vehicle embedded systems. Another important aspect
is that the explainability of the results is better compared to deep learning systems.
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1 Introduction

Information Technology (IT) security and data protection are enabling factors for
newly emerging intelligent distributed computing ecosystems such as the Internet
of vehicles [15]. Increasing attack surfaces in intelligent autonomous vehicles are
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inevitably caused by a strong interconnectedness of vehicles and the requirements
for external information sources and services. Despite the complexity of modern
vehicles with more than 100 interconnected Electronic Control Units (ECUs) and
more than 100 million lines of code, an imperative need is that the vehicle cannot be
controlled remotely by an attacker. Attacks based on remotely injecting messages
to safety critical ECUs in order to influence physical actions such as steering and
braking has already been demonstrated in [14]. It is thus very important to improve
security of in-vehicle networks and as long as there are no effective means to prevent
specific attacks, there should be methods in place to automatically detect them and
react to the alerts. In principle, the detection of anomalies in the network traffic
inside a vehicle that may be caused by intruders could be done remotely by sending
all internal traffic to a security operations center. However, this would not only be a
serious problem with respect to privacy concerns and regulations, it would also be
inefficient, cause high costs and maybe not fulfill real-time reaction requirements.

Thus, in this work we consider a new in-vehicle anomaly detection method which
aims at solving four requirements: It should (1) be as accurate as possible, because
false alarms may lead to unnecessary degradation of vehicle usability. It should (2)
be as resource efficient as possible. It should (3) not require hardware changes and
not require additional third party software libraries because these may be not avail-
able for vehicle-specific embedded systems or have licenses which would require to
make the in-vehicle software open source. Finally (4) the results of message evalu-
ation with respect to anomalies should be explainable, in order to be able to judge
about possible counteractions.

In order to address these requirements, we propose a logical analysis method
which we compare with a simple neural network based methods which could prob-
ably be applied in embedded systems inside vehicles. We aim at better accuracy,
faster and more resource efficient characterization of messages, portability to em-
bedded systems without dependencies on libraries such as tensorflow, and rule-
based reasoning so the results of message evaluation with respect to anomalies can
be back-traced to the responsible rules. We evaluate the proposed method on data
sets from the Controller Area Network (CAN) bus which is the standard solution for
in-vehicle communication between ECUs.

Section 2 gives an overview on the background and related work. Section 3 in-
troduces data sets from two different vehicles that have been used to evaluate the
proposed method. Section 4 describes some results from tests with neural networks
in order to provide a benchmark for our work. Section 5 presents the principles of
the characteristic function approach while Sect. 6 describes its implementation and
the results of various detection setups. Finally, Sect. 7 concludes this paper.

2 Background and Related Work

The most important topic in vehicle security should be the design of secure archi-
tecture, protocols, hardware and software. Hardening the system by reducing the
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attack surface is a common incremental approach. For example, [21, 25] list pos-
sible intrusion points together with proposals for countermeasures such as cryp-
tography, anomaly detection and ensuring software integrity by separating critical
systems. However, most of the currently discussed intrusion prevention measures re-
quire hardware changes, thus conflicting with backwards-compatibility. Therefore,
it has been proposed by some actors that, in the CAN context, intrusion detection
should be used in a defense-in-depth approach [6]. CAN intrusion detection meth-
ods can be grouped into four categories, namely, detecting ECU impersonating at-
tacks, detecting specification violations, detecting message insertions, and detecting
sequence context anomalies. The work on detection of ECU impersonating attacks
such as [5, 3] in most cases uses some kind of physical fingerprinting by voltage
or timing analysis with specific hardware. This work seeks to mitigate the general
problems of missing authenticity measures in CAN bus design and thus is comple-
mentary to the work presented in this paper. The detection of specification violations
assumes that the specification of normal behavior is available and thus there is an
advantage that no alerts based on false positives will be generated. Specification
based intrusion detection methods can use specific checks, e.g. for formality, pro-
tocol and data range [11], a specific frequency sensor [8], a set of network based
detection sensors [16], or specifications of the state machines [20]. The detection of
message insertions can be based on different technologies such as analysis of time
intervals of messages [19] or LSTM [24]. The methods for detection of sequence
context anomalies comprise process mining [18], hidden Markov models [12, 17],
OCSVM [23], neural networks [9], and detection of anomalous patterns in a transi-
tion matrix [13]. Comparisons of different Machine Learning (ML) algorithms are
given in [4], [22], and [2]. OCSVM, Self Organizing Maps, and LSTM are used
in [4] while LSTM, Gated Recurrent Units (GRU) and Markov models are used
in [22]. OCSVM, SVM, sequential neural networks and LSTM are used in [2].
A detailed review on intrusion detection systems for in-vehicle networks is given
in [1].

Our training sets and ML benchmark described in Sect. 3 are based on [2, 7].
We consider the method proposed in this paper in particular with respect to payload
analysis to be more accurate than the methods based on SVM, OCSVM and similar
approaches and to be much faster and more resource efficient than the methods
based on different kinds of neural networks.

3 Simulated In-Vehicle Attacks

For the evaluation of our work we used five different data sets from two different
vehicles, namely, HCLRDoS, HCLR f uzzy, HCLRgear, ZOE f uzzy, and ZOEpayload . We
mapped the relevant data of the CAN messages to the following tuple structure:
(time, ID,dlc, p1, . . . , p8, type), where time is the time when the message was re-
ceived, ID comprises information about the type and the priority of the message, dlc
(data length code) provides the number of bytes of valid payload data, and p1, . . . , p8
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is the payload. The messages are labeled by type (attack versus no attack). Three of
these data sets that we used have been published by the “Hacking and Countermea-
sures Research Labs” (HCRL) [7]. The HCLRDoS data set contains DoS attacks. For
this attack type, every 0.3 milliseconds a message with the ID “0000” is injected
(cf. m2 in Table 1). Conversely, in the HCLR f uzzy data set every 0.5 milliseconds
a random message is injected (cf. m3 and m4 in Table 1). The HCLRgear contains
spoofing attacks, where every millisecond a message with an ID related to gear is
injected, whereby payload does not change (cf. m5 and m6 in Table 1).

The ZOE data set with about 1 million messages has been collected from a 9 min-
utes drive with a Renault Zoe electric car in an urban environment. It has been used
before to evaluate process mining [18] as well as ML methods [2]. The ZOE data
set contains 110 different IDs which makes it much more difficult to reach a good
detection accuracy compared to the relatively simple HCRL data sets with maxi-
mal 38 different IDs. The ZOE data set originally contains no attack data but for
this work we have created a merged data set ZOE f uzzy by injecting 32000 generated
messages with random ID and payload, similar to the HCLR f uzzy data set. We have
also created another data set ZOEpayload where we similarly injected 10000 gener-
ated messages with randomly generated payload but only with message IDs which
have been used in the original data set. Thus, these messages are more difficult to
detect.

Table 1 Exemplary messages in data sets HCRL and ZOE

Message Time ID Length p1 p2 p3 p4 p5 p6 p7 p8 Type Comment

m1 0.851863 1264 8 0 0 0 128 0 105 209 19 1 HCRL: normal msg
m2 0.852103 0 8 0 0 0 0 0 0 0 0 -1 HCRL: DoS attack
m3 0.972222 1869 8 68 51 82 16 80 85 48 212 -1 HCRL: fuzzy attack
m4 0.982961 1139 8 148 217 62 32 201 26 23 44 -1 HCRL: fuzzy attack
m5 1.348859 1087 8 1 69 96 255 107 0 0 0 -1 HCRL: gear attack
m6 1.349963 1087 8 1 69 96 255 107 0 0 0 -1 HCRL: gear attack

m7 0.010919 504 8 248 4 255 239 254 0 10 13 1 ZOE: normal msg
m8 0.015625 1656 8 243 99 108 24 188 209 74 171 -1 ZOE: fuzzy attack

4 Baseline Benchmark: Neural Network

As a benchmark for the evaluation of our approach we used a neural network with a
structure that is based on a Sequential model from the keras.models pack-
age. Neural networks are the standard for deep learning and can model very complex
nonlinear relationships. A fully connected neural network utilizes a number of layers
with each layer supporting an arbitrary number of neurons. Data is propagated from
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the input to the output layer using weighted connections between the neurons of
these layers. In order to get a very high accuracy, we used two dense layers with 50
neurons each for the training data sets (trainable parameters: 3,201) and processed
the learning phase in 20 epochs. Tensorflow 11 with Binary Crossentropy, Adam
and Accuracy was used as loss, optimizer and performance metric. The validation
of the neural network was done with a standard train/test split of the original data.
In case of the ZOE f uzzy and ZOEpayload data sets we used random attacks initialized
with different seed for training and detection phases.

Table 2 Neural network results (Data set: log-file with simulated attacks; TP/FP/TN/FN: true/false
positives/negatives; Precision (Positive Predictive Value) PPV = T P/(T P+FP); Recall (True Pos-
itive Rate) T PR = T P/(T P+FN); Accuracy ACC = (T P+T N)/(T P+T N +FP+FN); Train:
time for training the model on i7; i7: time for running detection on i7; ARM: time for running
detection on ARM; Real: elapsed time in log-file).

Data set TP FP TN FN ACC PPV TPR Train i7 ARM Real

HCRLDoS 587521 0 3078250 0 100% 100% 100% 5m6s 14m37s 144m46s 47m
HCRL f uzzy 491829 118 3346895 18 99.99% 99.97% 99.99% 5m22s 15m8s 153m14s 91m
HCRLgear 597252 136 3845754 0 99.99% 99.97% 100% 6m10s 16m57s 175m7s 133m
ZOE f uzzy 31050 135 1012856 950 99.89% 99.56% 97.03% 1m23s 4m4s 41m31s 9m
ZOEpayload 9284 964 1012027 716 99.83% 90.59% 92.84% 1m26s 4m2s 40m21s 9m

The results in Table 2 show an accuracy above 99.83% for all used data sets.
Neural networks have the drawback of needing anomalous training data to be useful.
Training for all known attacks is very difficult because the training set has to cover
many variations of attack types. Furthermore, usually a data set covering all possible
’normal’ behaviors of vehicles is not available.

The training of the models has been done on a laptop with Intel i7-8550U CPU.
The detection tests have been executed on the same laptop and also on a Rasp-
berry Pi with ARMv7 CPU. In order to run the detection in real-time within an
in-vehicle network it is a necessary precondition that the detection is faster than the
real elapsed time as listed in the last column of Table 2. By comparison with the
detection times on a Raspberry Pi (cf. column ARM), it is evident that an IDS using
these neural network models would not be fast enough on an embedded system with
such processing power.

5 Principles of the Characteristic Function Approach

We aim at synthesizing a formal model for the network from a log of events. In con-
trast with other tentatives we focus on the fact that every good message sent in the
network and thus occurring in the log is to be accepted by a device in this network.
Thus and in contrast with natural systems, we know there exists, implemented in the
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devices connected to the CAN bus, tests that are employed to accept only legitimate
messages. Conversely, legitimate messages sent on the bus are constructed so as to
pass these tests.

Under this assumption our approach consists in first choosing a set of tests that is
likely relevant to the communications on the CAN bus, second in analyzing the log
to keep only tests that are likely to be implemented by the devices or that are conse-
quences on the messages’ payload of the information conveyed. Third we apply the
tests computed during the training phase on messages from another log.

Considerations on the tests space. The first step consists in choosing a set of
simple tests that are likely to be relevant. The space of all possible tests will then be
all the possible conjunctions and disjunctions of these simple tests. We model pack-
ets by an ID and a sequence of bytes, i.e. 256-valued integers. This ID determines a
class to which each packet belongs. We assume that all packets in a given class are
similar enough so that some tests exist that are valid on all messages on the class
and are not vacuous.

In principle the test space encompasses all boolean functions on messages or
sequences of messages. However a succinct analysis already delineates a few types
of tests that may be useful for the analysis of logs:

• some tests are concerned about the syntactic content of the packet, such as the
presence of a padding constant or the presence of a specific value, denoting e.g.
a more precise type for the packet;

• some tests are computed on the whole packet, such as an error-correcting code;
• some tests are domain specific and relate to the possible evolutions of physical

data between consecutive packets or the set of possible values of some data;
• some tests depend on the internal state of the devices, a packet being acceptable

at some point of their execution but not at another point.

For the sake of simplicity we consider in this paper only tests performed indepen-
dently on the different fields of messages, as well as on their ID and their time,
translated into first a 32-bits integer, then treated as four different 1-byte fields. That
is, we consider only the first and third cases of the preceding list. We detail be-
low how the interesting fields are discovered and how we construct rules from their
values.

Classes of messages. Messages are placed in classes depending on the value of
their IDs. A value test or a difference test has to be valid on all messages of a given
class during training to be incorporated in the monitor.

Automatic fields. A field is automatic if the device receiving and accepting this
packet tests whether the value of the field is equal to a constant in its program. It
is expected that, if different packets can be sent from one device to another, at least
one automatic field exists so that the receiver can derive the type of the received
packet. The statistical characteristic of such fields are that they should have only a
few legitimate values, and that these values should have no other detectable relations.

There is obviously some arbitrariness in deciding what a few means. Since the
tests performed are not based on any hints from the protocol, we have arbitrarily
decided to define a small set of different values to be the square root of the total
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number of possible different values, that is less than 16 values among the 256 pos-
sible ones. In future work we plan to adapt this choice wrt the number of messages
in the class. Tests relevant to automatic fields are value tests in which we record all
the different values occurring in a field during training. If the number of different
values is more than 16, we perform no value test on that field during monitoring.
Otherwise we verify during monitoring that the value in that field for a message is
among the ones seen during training. To sum up, value tests are a conjunction, on
all fields f , of a disjunction f = v1∨ . . .∨ f = vk with k≤ 16, or of the true constant
> if more than 16 different values have been encountered.

Physical values. These are values that are assumed to evolve slowly. For these
values we assume a bound on the difference between the value present in the current
packet wrt the value occurring in the last preceding similar packet. For these fields
the analyzer keeps track of the value in the last accepted message and compares that
value with the one in the current message. As in the case of value tests, these differ-
ence tests are performed during monitoring only if a small (less than 16) number of
changes have been observed during the training phase. Re-using the same notation
as above, but now denoting f the value of a field in the last accepted packet, and f ′

its value in the packet under analysis, difference tests are a conjunction, on all fields
f , of a disjunction ( f ′− f ) = v1∨ . . .∨( f ′− f ) = vk with k≤ 16, or of the true con-
stant > if more than 16 different values have been encountered for the difference
between the values for that field between a message and its predecessor.

Random values. There are fields for which no relation was found in the data set
among the ones that were searched for. In the data sets considered, a post-analysis
of the rules has shown that in several cases these fields are often related with the
physical value fields, and that the data conveyed were actually 2-bytes values. The
analyzer does not perform any test on these fields, as per the construction described
both the value and the difference tests are reduced to the > constant for these.

6 Implementation and Evaluation of Characteristic Function
Approach

Our approach consists in using tests to first classify messages into classes, and sec-
ond to characterize messages in a given class by the set of tests they pass. The
monitor only implements tests that are satisfied by all messages in a given class.
In the experiments of Table 3 the only classification performed is on the ID field.
The tool outputs, for each class, the tests that are to be performed on packets of that
class. We believe this information to be very valuable for future work.

First, it permits to compute the probability that a random message satisfies all
the tests in the class, and thus allows us to evaluate the robustness of the monitor
against the injection of random messages. Assuming that in a given class there are
n fields classified as automatic and m fields classified as physical, and that tests on
fields all accept the maximum of 16 values, a random message in that class has
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a probability ( 16
256 )

n+m = 2−4·(n+m) to be accepted. This small but non-negligible
probability explains the occurrences of false negatives in Table 3.

Second, given that the rules generated implement simple tests, it is also in theory
possible for a human to better understand the system by looking at the rules pro-
duces, and eventually produce new (and less generic) tests beyond those described
in this paper. A side result of this is that it is also quite easy to build a fake traffic
that will be accepted by a monitor once we know its rules.

Third, it permits to focus further classification work on classes for which only a
few fields are tested. Though this is outside the scope of this paper, a manual analysis
of the rules produced and of the messages in these classes strongly suggests new test
functions tailored to handle these cases.

Table 3 Results of characteristic functions approach (Data set: log-file with simulated at-
tacks; TP/FP/TN/FN: true/false positives/negatives; Precision (Positive Predictive Value) PPV =
T P/(T P + FP); Recall (True Positive Rate) T PR = T P/(T P + FN); Accuracy ACC = (T P +
T N)/(T P+T N +FP+FN); Train: time for training the model on i7; i7: time for running detec-
tion on i7; ARM: time for running detection on ARM; Real: elapsed time in log-file).

Data set TP FP TN FN ACC PPV TPR Train i7 ARM Real

HCRLDoS 587521 0 3078250 0 100% 100% 100% 0.9s 1m1s 17m2s 47m
HCRL f uzzy 491847 0 3347013 0 100% 100% 100% 1.2s 1m2s 17m48s 91m
HCRLgear 597252 0 3845890 0 100% 100% 100% 1.2s 1m22s 20m27s 133m
ZOE f uzzy 31985 0 1012991 15 99.99% 100% 99.95% 0.3s 0m19s 5m1s 9m
ZOEpayload 9910 0 1012991 90 99.99% 100% 99.10% 0.3s 0m19s 4m50s 9m

A final comment on the experiments shown in Table 3 is that we have encoun-
tered no False Positive, which shows that though it is arbitrary, the heuristic thresh-
old of 16 is not too high as it does not classify a field that contains random values
into an automatic field, i.e. no overfitting has been observed. This however should
not be interpreted as an impossibility for our approach to suffer from over-fitting.
Especially a training dataset which is too short would tend to produce illegitimate
value tests, e.g. for the fields recording the timestamp of the packet.

Implementation. The algorithm has been implemented in C. The log is first
translated if necessary into a binary file which is then mmap’d to an array of struc-
tures, each structure representing a packet. This array is then analyzed indepen-
dently by different modules. Each analysis module constructs a balanced binary
tree mapping an ID to the result of the analysis on this ID. The monitor uses this
structure to parse a log file and test whether a packet shall be accepted.

Resources. During training all the log is virtually available in memory, though
we rely on the operating system to optimize speed and memory consumption. By
construction the memory needed by the monitor is linear in both the number of
different IDs and in the number of fields.

As can be seen in Table 3, the results are very encouraging against the different
attacks considered. It shall be noted that knowing the results of the analysis modules,
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it is also quite easy to construct attacks (i.e., add additional messages) that follow a
pattern that will be accepted by the analyzer.

7 Conclusion

We have seen in previous work [2] that neural network approaches to anomaly de-
tection deliver good results but that it is hard to implement this kind of detection
in-vehicle because of restictions with respect to on-board resources of typical ECUs
used in vehicular systems. Thus, we have started to analyze logs using a bind and
branch approach that was very accurate but lacked robustness. From this experience
we built a log analyzer in C that focused on payload bytes having either a small set
of different values or a small set of possible changes. The results obtained are at
least comparable with results obtained using standard ML techniques.

We will work in the near future on refining the analysis to guess the functions em-
ployed by the devices to test whether the packet shall be accepted. In order to evalu-
ate our approach in a realistic context, we will further test our approach in a setup of
several Raspberry Pis equipped with CAN-bus boards which use components such
as the Microchip MCP2515 CAN controller with MCP2551 CAN transceiver that
are typical for automotive ECUs. We furthermore plan to extend our approach to
CAN with flexible data-rate (CAN-FD) which is an extension of the original CAN
bus protocol with higher bandwidth. Another possible evaluation could improve the
baseline neural network performance on micro-controllers utilizing optimized neu-
ral network functions such as CMSIS-NN [10].
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