
c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Original IEEE publication: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6657303

Fraud Detection in Mobile Payments Utilizing
Process Behavior Analysis

Roland Rieke∗†, Maria Zhdanova†, Jürgen Repp†, Romain Giot‡ and Chrystel Gaber‡
∗Philipps-Universität Marburg, Germany
†Fraunhofer SIT, Darmstadt, Germany

Email:{roland.rieke,maria.zhdanova,juergen.repp}@sit.fraunhofer.de
‡France Télécom-Orange Labs,

Caen, France
Email:{romain.giot,chrystel.gaber}@orange.com

Abstract—Generally, fraud risk implies any intentional decep-
tion made for financial gain. In this paper, we consider this
risk in the field of services which support transactions with
electronic money. Specifically, we apply a tool for predictive
security analysis at runtime which observes process behavior with
respect to transactions within a money transfer service and tries
to match it with expected behavior given by a process model.
We analyze deviations from the given behavior specification for
anomalies that indicate a possible misuse of the service related to
money laundering activities. We evaluate the applicability of the
proposed approach and provide measurements on computational
and recognition performance of the tool – Predictive Security
Analyzer – produced using real operational and simulated logs.
The goal of the experiments is to detect misuse patterns reflecting
a given money laundering scheme in synthetic process behavior
based on properties captured from real world transaction events.

Keywords—money laundering; predictive security analysis;
analysis of business process behavior; security modeling and
simulation; security monitoring.

I. INTRODUCTION

The field of Mobile Money Transfer (MMT) is a growing
market segment, particularly in developing countries where
banking systems may not be as dense or available as in
developed countries. For example, M-Pesa, which was launched
in 2007 in Kenya, displayed in December 2011 about 19 million
subscribers, namely 70% of all mobile subscribers in Kenya [1].
Orange Money is deployed in 10 countries and gathers around
14% of the mobile subscribers of these countries [2]. In such
services, transactions are made with electronic money, called
mMoney. The users can convert cash to mMoney through
distributors and use it to purchase goods at merchants, pay
bills or transfer it to other users [3]. Like any other money
transfer service, this service is exposed to the risk of money
laundering, i.e., misuse through disguising illegally obtained
funds to make them seem legal, and more generally fraud
risk that implies any intentional deception made for financial
gain [3].

In this paper, we apply a tool – the Predictive Security
Analyzer (PSA) – that implements predictive security analysis
at runtime [4], [5] in order to identify misuse patterns in event
streams of MMT transactions that can be concerned with money
laundering activity. Predictive security analysis at runtime is an
advanced method for the evaluation of security-related events

and their interpretation with respect to: (1) the known control-
flow of the processes involved, and (2) the required security
properties. With respect to (1), deviations of observed process
behavior from the given process specification are analyzed.
These deviations can be the result of an evolution in the process
specification, problems with the measurement (e.g., lost events),
or anomalies caused by attacker’s interventions. Regarding (2),
continuous monitoring of security properties specified for the
process in question is performed to detect potential security
violations.

The PSA takes as an input real-time events from the
process execution environment, a process model and its security
requirements. For informal modeling of MMT processes (at the
business logic level) we employ the Event-driven Process Chain
(EPC) language [6]. Security analysis of event-driven processes
uses a formal process model encompassing the incoming events.
If a critical state, i.e., a process anomaly or a security require-
ment violation, is detected the PSA provides a semi-automatic
treatment by visualization and inspection of the problem (un-
certainty management) or performs automatic generation and
dissemination of alerts for further processing depending on the
selected option. Due to the advanced security analysis method
the PSA can enhance evaluation and correlation capabilities of
Security Information and Event Management (SIEM) systems,
as shown for MASSIF SIEM [7].

In this paper we evaluate the applicability of the approach
and the performance of the PSA in this context. In particular,
we show that: (1) the PSA is able to manipulate an event
stream of operational systems in real time; (2) the PSA is
able to raise alerts on most fraudulent transactions related to
money laundering. The results of the experiments on real and
simulated events for several money laundering scenarios will
allow us to determine sensitivity and specificity of the PSA
and refine the detection scheme.

The paper is organized as follows: Section II introduces the
MMT scenario and a misuse case related to money laundering
and Section III gives an overview of the PSA and its application
in the experiment. Section IV introduces the experimental
setup, while Section V discusses the results of the experiments.
Section VI reviews related work and Section VII presents
conclusions and directions for further research.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6657303


Figure 1. Economical environment of Mobile Money Transfer services

II. FRAUD DETECTION IN MOBILE MONEY TRANSFER
SYSTEM

A. Mobile Money Transfer

This article is based on the MMT use case detailed in [8].
This section sums up the major points to understand the use
case. MMT systems are systems where electronic money, called
mMoney (or m), is issued to different roles (e.g., regular users,
retailer, merchant, etc), in order to perform various types of
transactions (e.g., mobile recharge, cash in, cash out, national
or international transfer, bill payments, etc). Figure 1, which
is adapted from [9], shows the economic principle of mMoney
and the roles of the various actors. As depicted, the Mobile
Network Operator (MNO) emits mMoney in partnership with a
private bank. The MNO regularly produces compliancy reports
to the Central Bank, responsible for the country’s monetary
policy. In particular, it is the MNO’s responsibility to detect
suspicious money laundering activities and to report them to
the Central Bank, hence the importance of SIEM systems for
MMT systems. The emitted mMoney can only be used among
the MNO’s clients who subscribe to the MMT service. The
subscribers are end-users, service providers or retailers. They
hold a prepaid account stored on a platform and accessible
via the MNO’s network and an application on their mobile
device. Some users, such as retailers or service providers, can
use computers to access their account. This account contains
mMoney which can be acquired from the retailers. End-users
can either transfer money to other end-users or purchase goods.

B. Misuse case

We are interested in a misuse case related to money
laundering using MMT (see Figure 2). A malicious user
(fraudster) transfers small amounts of money to several mules.
These mules can optionally receive the money at the end of
a chain of mules. Then the mules of the final chain make a
final transfer to a second malicious user. Each mule may keep
a small percentage of the transfer as a salary. Also, these mule
transfers can be manually operated by a mule or automatically
transfered by a malicious software installed on the mobile
phone and exploiting a flaw in the mobile money application.
This way, the first malicious user has transfered money to the

Figure 2. Description of the money laundering scenario: several mules receive
mMoney from a malicious user and transfer a high percentage of this mMoney
to another malicious user. The first malicious user does not want to be directly
linked with the second malicious user

second malicious user, but there is no direct transfer traces
between them.

Many schemes of money laundering are known and crimi-
nals struggle to invent new ones [10], [11]. In this paper we
consider a money laundering scheme involving the following
assumptions: (i) there is only one mule in the chain of mules;
(ii) the amount of a fraudulent transaction is much smaller then
the average on the system; (iii) along with fraudulent actions
the mules perform regular mMoney transfers; (iv) normal
behavior of a MMT user (as observed in the operational logs)
is persistent in regard to transaction amounts used, i.e. sudden
changes in transferred mMoney amounts indicate an anomaly.
These limitations do not restrict the proposed approach to fraud
detection as far as one is able to model a process workflow
related to a chosen (any other) money laundering scheme.

III. PREDICTIVE SECURITY ANALYSIS AT RUNTIME

The PSA provides support for the whole cycle of event-
driven process security analysis.

a) Event pre-processing: Events come from an Exten-
sible Markup Language (XML) stream or a database based
on a pre-defined event schema, which is necessary in order to
filter out data containing information not relevant to security
analysis. Therefore, the PSA supports the creation of an event
abstraction and mapping of events to the corresponding process
instance (cf. Figure 3).

b) Process specification, adaptation, and close-future
behavior analysis: The PSA uses Asynchronous Product Au-
tomata (APA) for formal process representation [12]. Process
specifications given in EPC can be modeled by APA. EPCs are
used in business process engineering, deployment and runtime
control and supported by such leading products as SAP R/3
and ARIS [13]. The EPC language is intended to be easy
to understand and use by people who are not familiar with
formal specification methods. Therefore, the PSA assists the
user not only in generation of a EPC, but also in transformation
of this informal process model into an operational formal
model. Existing EPC models can be adapted step-by-step,
using archived event logs for replay and also interactively



Figure 3. Feature selection. Few fields of the events are used, and the
concatenation of two of them provides the process id

Predict process behaviour

Get next event

Map event to process state

Discard event

Predict process behaviour

Adjust process model

Generate alert

Event fits to
event model

Event
expected

Learning
phase

[true] [false]

[true]
[false (uncertainty mgmt.)]

[true]

[false]

Figure 4. Runtime behavior of the PSA

during runtime. The uncertainty management supports semi-
automatic adaptation of process models according to the
context conditions. Uncertainty situations can occur during
synchronization of the state of a running process instance and
the state of the model if the process model is not accurate
enough or outdated, or when unknown events are received or
expected events are missing. Beside APA models, Petri Net
Markup Language (PNML) specifications [14] generated by
process discovery tools (e.g., ProM [15]) can be imported. For
all specification methods the computation of the close-future
behavior is supported.

c) Security requirements specification and evaluation:
The PSA allows for specification of the required security
properties that the monitored process should fulfill (a security
model in form of monitor automata), on-the-fly check of
security requirements with respect to current process behavior
(detection of critical process states), as well as techniques for
on-the-fly check of security requirements with respect to close-
future process behavior (prediction of critical process states).

d) Situational awareness and alarm generation: The
PSA provides visualization of current process states with
respect to security requirements by means of security monitors,
and generation of alarms on detection of critical states.

In the work presented in this paper the PSA has been used in
two phases, namely, a learning phase and an anomaly detection
phase.

medium

��

EPC_medium

��

normal big

��

EPC_big

��

EPC_normal

����

tiny

��

EPC_tiny

��

��

Figure 5. Subgraph of EPC for MMTS

In the initial learning phase, the normal behavior pattern
with regard to the transaction characteristics is learned by
processing an event log without malicious content. A mapping
to classify the transactions with regard to the amount of money
transferred (cf. Table I) and the order of such abstract events
in the event log is used for this purpose. For example, an event
from the MMT system where the amount of transferred money
is greater than 500 but less or equal 1000 is mapped to the
abstract event medium. This mapping is created empirically
using real operational logs of the MMT system and can
change if different training sets are used. Figure 4 shows an
overview of the PSA event processing steps in the learning
phase. The dashed action “Adjust process model” is done
semi-automatically and requires the user’s involvement during
runtime. All other actions are performed automatically.

Figure 5 shows a subgraph of an EPC which was learned for
the MMT model. The graph shows the control flow structure
of a process as a chain of events and functions. Rectangles
with rounded corners denote EPC functions and hexagons
denote EPC events. Functions represent active components,
i.e., activities, tasks or process steps, which are triggered
by events. Events are passive, they represent the occurrence
of a state which describes the situation before, or after, a
function is executed. Logical and , or , and xor (exclusive
or) operators are used to connect the basic constructs, in
this way the control flow is specified. For example, after an
event medium the function EPC_medium is triggered. The
expected “normal” events after execution of EPC_medium
are {normal,medium, big}.

In the anomaly detection phase the PSA identifies devia-
tions from the normal characteristics based on the values from
a transaction monitor and generates alerts. In our experimental
setup, the transaction monitor has been replaced by synthetic
process behavior composed of simulated logs based on proper-
ties captured from real logs. In the anomaly detection phase the
dashed action “Adjust process model” in Figure 4 is not used.
Instead, an alert is generated automatically by the uncertainty
management components of the PSA.

In order to reduce the number of alarms, it is necessary
to configure the normal behavior model with the help of a
real world dataset with annotated transactions (suspicious/not
suspicious) or to use an additional component which filters the
alerts generated by the PSA. Fraud analysis with additional
components is beyond the scope of this paper.



IV. EXPERIMENTAL PROTOCOL

A. PSA Configuration

The PSA is used in a non-interactive way: when it detects
an unexpected event, an alert is automatically generated.

1) Definition of a mapping: The amount of a transaction is
a continuous variable in R, therefore discretization is necessary
to get computable abstractions of the behavior. For this reason,
we have empirically created various classes of transfer amounts
(see Table I).

2) Definition of an EPC: In order to use the PSA it is
necessary to define an EPC which models the MMT process.
However, the events generation does not come from the control
flow of the mobile money system, but from the behavior of
its users. For this reason, the EPC must model the workflow
of the user and not the workflow of the system. It is possible
to define several processes in one PSA model. The PSA also
provides the capability to investigate parallel running process
instances with the same behavior. This capability was used to
specify a general behavior which is followed by every user.

We found out that it is challenging to define a workflow
of transactions because every user is free to use the system
as he wants (i.e., he can choose own amounts, frequencies,
communities of interests, etc.). There is one process instance
for each pair of active users and type of transaction (i.e.,
(user1, CASHIN)), because we make the assumption that the
amount of transactions of the same type (i.e., only CASHIN ,
only TRANSFER, etc.) are similar, while amounts of trans-
actions of different kinds are not [16].

For this reason we have to create a more general process. A
process behavior representation which is generated by the PSA
from the respective EPC (cf. Figure 5) is shown in Figure 6.
Each node is a state, each edge is a transition labeled with the
event source. For each state, only the following transactions
are authorized: do a transfer in the same amount family, do
a transfer with the previous amount family, or do a transfer
with the next amount family. The very first transition allows
to go to any state. All the other possible transactions which
are not present in the graph raise an alarm and are considered
as being potentially malicious.

B. Logs at our disposal

1) Operational logs: Although different kinds of logs
(access, transfer, etc.) can exist in the mobile money transfer
system, we only have at our disposal the transactions log.
The transactions log contains the sender and receiver of the
transaction, its amount, its success, the type of transaction and
the type of the sender and of the receiver as well as other fields
specifics to the system. These logs are driven by the behavior
of the users: indeed the events are propagated only when the
user do some transactions. We have more than 4.5 millions of
correct events (accepted transactions) acquired on a period of
9 months.

However, as we have no ground truth (i.e., fraudulent or
not fraudulent) on these events, we cannot use them directly to
detect fraud. They are nevertheless very useful to analyze the
ability of the PSA to manage real life events in real time. For
detection evaluation (in terms of error rates), we use simulated
logs.

start

minuscule
minuscule

tiny
tiny

small

small

normal

normal

medium

medium

big

big

large

large

huge

huge

minuscule
tinyminusculetiny

small

tiny

small

normal

small

normal

medium

normal

medium

big

medium

big

large

big
large

huge

large

huge

Figure 6. Process behavior representation of the EPC defined for MMTS

2) Simulated Events: As real world transactions have no
ground truth we have implemented the misuse case in a
simulator [17]. This simulated world is based on properties
captured from real world transaction events. We are interested
in a money laundering scenario (see Figure 2).

We have configured 3 scenarios with different number of
users of the following categories:

a) Regular users: They make regular transfers (mean
amount of 4000, standard deviation of 500), withdrawal and
deposits.

b) Malicious users: (within the group of regular users).
They want to exchange money without leaving direct traces in
the system.

c) Mules: (within the group of regular users). They
receive an amount (min amount of 20, max amount of 100)
from a malicious user and transfer it later to another one after
keeping 10% of interest.

d) Merchants: They correspond to shops where regular
users can buy goods with mMoney.

e) Retailers: They allow end user to exchange mMoney
with real money (and vice versa).

The parameters of the three scenarios are:

S1 No money laundering: 50 regular users, 8 merchants,
4 retailers. This set serves to verify if normal transfers
are detected as being fraudulent (False Positive).

S2 Money laundering: 50 regular users, 5 mules, 8 mer-
chants, 4 retailers. This set serves to verify if the PSA
is able to detect frauds.

S3 Money laundering with more individuals: 500 regular
users, 10 mules, 16 merchants, 4 retailers This set
serves to verify if the PSA can detect frauds when
there are more non-fraudulent events.



Table I. MAPPING FOR DISCRETIZATION OF THE TRANSACTIONS’ AMOUNTS

Class minuscule tiny small normal medium big large huge
Amount condition ≤ 5 ≤ 50 ≤ 200 ≤ 500 ≤ 1000 ≤ 2000 ≤ 5000 other

Note that, we have used a slightly different mapping for
the simulated logs in comparison to the real logs.

C. Experiment

Our analysis tackles the computational and recognition
performance of the PSA. We seek to ascertain how long it takes
to process an event or spread an alert and whether it is possible
to treat in real time the stream of events of an operational MMT
system. The computations were done with a personal computer
(2 cores CPU at 2.70GHz, 4Gb RAM). Finally, we will measure
the error rates of the PSA. Any potential errors in detection
will be taken advantage of in order to learn and improve the
detection scheme.

D. Evaluation metrics

The computational performance of the PSA is evaluated
by counting the number of events per second successfully
processed by the PSA. For the recognition performance we
use several metrics: (a) False Positive, not fraudulent event is
detected as being fraudulent; (b) False Negative, fraudulent
event is detected as being not fraudulent; (c) True Positive,
fraudulent event is detected as being fraudulent; (d) True Neg-
ative, not fraudulent event is detected as being not fraudulent.

V. EXPERIMENTAL RESULTS

A. Real events analysis

For the real events, we are interested in the computational
performances. Figure 8a represents the number of transactions
between the different states (only the transactions present in the
events log are displayed). Most transactions are not considered
as suspicious and most suspicious transactions are between the
state “tiny” and “normal” (so a more accurate process model
would allow such kind of transitions).

We found out that there was one process per pair of users
and transaction type. With the real log, the PSA was able to
manage 640,000 instances without any problem. 40 minutes
were enough to process 4.5 millions of events, with the process
behavior presented in Figure 8a, and produce 0.5 millions of
alerts. 33 minutes were enough for a complete run which does
not generate alerts. Set X as the time to process an event
and Y the additional time to process an alert. They can be
found by solving these two equations: X ∗ 4.5M = 33 ∗ 60
and X ∗ 4.5M + Y ∗ 0.5M = 40 ∗ 60, which gives X =
0.00044 and Y = 0.00480. Thus, in the best theoretical case
(no alerts are generated), the PSA is able to process more
than 2200 events/second (1/X), while in the worst theoretical
case (all events raise an alert), the number is reduced to 191
events/second (1/(X + Y )). We can summarize these results
by saying that the PSA is able to manage an average of 100
millions of events per day on a standard computer ((2200 +
191)/2 ∗ 60 ∗ 60 ∗ 24).

Figure 7. Histogram of the transactions amount of scenario S3

B. Simulated events analysis

In case of the simulated events, we are interested in the
recognition performances. As the simulation is stochastic, the
evaluation has been repeated several times. However, the results
are very similar for each run.

Figure 7 presents the histogram of the transactions amounts
depending on their type in scenario S3. We can see that the
distribution of the mule transfer is a bit translated to lower
amounts in comparison to the distribution of initial fraudster’s
transfers (because of the interest kept by the mule) and overlaps
with the distribution of withdrawal and deposits.

Figure 8b represents the number of transactions between the
different states in scenario S2. For the simulated logs, we can
see that 9 (4+5) transactions have been detected as suspicious.
However, most of the transactions are in the range of authorized
transactions according to the EPC.

Table II gives the recognition performance of the PSA on
the selected example of each scenario, and Figure 9 presents the
transactions of the participants involved in the fraud of S2 (the
other users which made no transactions with the fraudsters
are not displayed for clarity reasons). Each node represents
a user, each edge represents a transaction, the label of an
edge represents the index of the transaction in the sequence.
Small gray edges represent True Negative, orange (gray for
printed version) edges represent False Positive, green (dark
gray) edges represent True Positive, red (black) edges represent
False Negative. For scenario S1, the ratio of False Positive is
null. For scenario S2, the ratio of False Positive is equal to
5/655 ' 1%, while the ratio of False Negative is of 6/10 '
60% if we consider the whole set of irregular transactions (first
fraudster to mules and mules to last fraudster), or 1/5 ' 20%
if we consider the subset of irregular transactions detectable by
the PSA (mules to last fraudster). For scenario S3, the ratio of
False Positive is of 3/5297 ' 0.05%, while the ratio of False



big 439637

medium

98532

large
70719

huge

691

normal

37194

minuscule

48703

tiny

42204

small

36566

99543

360754

15131

224

152345

26332

38490

23208

73843

14387

60684

1090

11319

10988
11120

9022

702

560

1048

1785

672

219
238

200

43919

156699

11756

827

1096991

80693 416837

9762

4038

1168

1126

19

921

39903

16582

1572

5168

2166

1837

66

1888

18527
229296

2643

7303

2667

2136

51

2559

4127

5059

17137

start

135934

66447

39224

707

311465

13315

67514

4999

(a) Real events

huge

large
4

3167

small

4
5

105

tiny
105
111

103

start

1

48

23

33

(b) Simulated events on scenario S2

Figure 8. Transactions obtained on a simulated run with a limited amount
of users. Width of an edge is proportional to the number of transactions and
red color corresponds to generated alerts

Negative is of 11/20 ' 55% if we consider the whole set of
irregular transactions, or 1/20 ' 5% if we consider the subset
of irregular transactions detected by the PSA.

The fraudulent transactions made from the initial fraudster
to the mules are not detected as being suspicious, which is
correct as the EPC has not been constructed to detect these
transactions. The transactions of all mules, except EU0 , to
the fraudster are correctly detected as being suspicious. All
the non-suspicious transactions of mule EU0 are detected as
being suspicious.

C. Discussion

As we have no ground truth on the real world events, we
cannot verify the recognition performance of the PSA. However
we can notice that the number of alarms is quite important,
and obviously superior to the real quantity of suspicious
transactions. In order to reduce the number of alarms, it would
be necessary to fine-tune the EPC with the help of a real world
dataset with annotated transactions (suspicious/not suspicious)

Table II. SENSITIVITY AND SPECIFICITY OF THE PSA ON DETECTION
OF ANOMALIES IN TRANSACTIONS

Fraudulent Normal Total
Alarm raised 0 0 0
Alarm not raised 0 1077 1077

Total 0 1077 1077

(a) Scenario S1

Fraudulent Normal Total
Alarm raised 5-1 5 9
Alarm not raised 1+5 650 656

Total 10 655 665

(b) Scenario S2

Fraudulent Normal Total
Alarm raised 10-1 3 12
Alarm not raised 1+10 5294 5305

Total 20 5297 5317

(c) Scenario S3

or to use an additional component which filters the alerts
generated by the PSA.

The PSA shows the correct behavior in all scenarios. The
detection errors with user EU0 come from the fact that the
very first transaction of the user is the fraudulent one. The
respective process state component is then set to this amount.
Thus all his next transactions are detected as being suspicious
as there is no transition in the process behavior representation
to the state related to this amount. As a matter of fact, the
other transactions of this user will be indefinitely detected as
being suspicious in the future.

Usually, the evaluation of anomaly detection tools is done
using a ROC curve [18] (sensitivity and specificity obtained
for various configuration thresholds τ ∈ R). The PSA cannot
be configured with such a simple threshold. Instead, there is a
complex configuration (ρ = (ρEPC , ρmapping)) composed of
an EPC configuration (ρEPC ∈ E, E is the set of possible
EPCs) associated with a discretization scheme for transfer
amounts (ρmapping ∈ M, M is the set of possible mapping
functions). It is thus difficult to automatically run through the
possible choices of EPCs and discretization schemes in order
to obtain several configurations giving the ROC curve. For this
reason, we provide only one performance point.

VI. RELATED WORK

With respect to the exhaustive survey of approaches in
the field of business process management given in [19], the
functionality the PSA prototype [4], [5] used in this work
could be classified as “check conformance using event data”
approach. In this approach, information is used both from
the process model and the event data in order to identify
deviations of runtime behavior from expected behavior. The
trend for this specific aspect of business process management,
as presented in [19], shows a growing interest in the last
three years. A similar approach is described in [20] but the
focus is on quantification of inconsistencies by the formation
of metrics. We consider the framework presented in [15]
on runtime compliance verification for business processes as
complementary to our work.

Many data-mining algorithms have been adapted for fraud
detection in the banking field. Filters, decision trees and logistic



FR1

EU1
97

EU0

12

EU4

285

EU2

132

EU3

213

Ret1

Ret4

FR2

143

Ret2

EU37

EU38

EU23

274426

64

Ret3

EU6

204

EU27

611

EU49

370

EU44

EU19

233

EU42

299

EU11
EU10

EU40

EU30

EU28

EU31

EU18

EU43

EU21

EU26

EU41

Figure 9. Representation of the users involved in the fraud and their transactions in scenario S2. The transfers of the mules, except those of EU0 , have been
detected. Various transfers from EU0 raised false alarms

regression are the most used because they can be easily
interpreted. As a result, it is easier for an operator to explain
to a client why a specific transaction is considered as being
fraudulent. Other methods involving automated model learning
are more rarely used because of the difficulty to interpret results
and of the need for training data. However, there are some
industrial solutions based on such methods. VISA, for example,
implements neural networks in their fraud detection tool, RST
(Real-Time Scoring) [21]. This tool associates a score to a
transaction and raises an alert if the score exceeds a threshold
chosen by the bank. However, it is the bank’s responsibility to
find out the reasons why a transaction which raised an alert

should be blocked.

Bhattacharya et.al. [22] and Delamaire et.al. [23] published
a state-of-the-art of the data-mining algorithms used for de-
tecting frauds among credit card transactions. They show that
several attempts were undertaken to adapt neural networks,
SVMs, Bayesian networks, decision trees, expert systems and
Hidden Markov Models to the field of credit card transactions.
In [24], a separate change detection model for each cell in
a multi-dimensional data cube is used for a change detection
system for VISA. To our knowledge, not all mobile payment
services include automated fraud detection solutions. The
surveillance can be manual or based on business rules. However,



the M-PESA service, which is one of the most well known
MMT services, has deployed MinotaurTM Fraud Management
Solution in 2012 [25]. This fraud management system is based
on the use of business rules and neural networks [26]. To our
knowledge, there are no public works concerning the study and
the adaptation of fraud detection methods to mobile payment
systems. Therefore, we cannot easily compare our work to
existing systems.

VII. CONCLUSION

The work presented in this paper utilizes alerts generated
by the uncertainty reasoning component of the PSA to detect
money laundering patterns in synthetic process behavior com-
posed of simulated logs based on properties captured from real
world transaction events.

We have shown that the PSA is able to raise alerts in a
simulated scenario of fraud with mules. For this simulated
scenario, the detection is efficient, but show that such system
could be sensitive to noise in a real world system. It would
be necessary to improve the resistance to noise through a
correlation of the generated alerts or by an application of
specific evaluation of the process states when an alert is
generated (for example, move to the critical state if the same
alert has been raised several times).

Results of the PSA should be associated with decision and
reaction systems in order to modify the security rules of the
MMT system to automatically block the fraud [3]. In order to
ease the evaluation of the system, it could be interesting to
develop methods able to automatically produce a huge quantity
of EPCs to provide several evaluation points.

ACKNOWLEDGMENT

The presented work was developed in context of the
project MASSIF (ID 257475) being co-funded by the European
Commission within the Seventh Framework Programme.

REFERENCES

[1] CCK, “Quarterly sector statistics report,” Communications Commission
of Kenya, Tech. Rep., 2012.

[2] Orange, “Orange money,” http://www.orange.com/en/press/press-
releases/press-releases-2012/Orange-Money-reaches-4-million-
customers-and-launches-in-Jordan-and-Mauritius, June 2012, last
visit on 12/04/2013.

[3] R. Rieke, L. Coppolino, A. Hutchison, E. Prieto, and C. Gaber, “Security
and reliability requirements for advanced security event management,”
in Computer Network Security, ser. LNCS, I. Kotenko and V. Skormin,
Eds., 2012, vol. 7531, pp. 171–180.

[4] R. Rieke and Z. Stoynova, “Predictive security analysis for event-driven
processes,” in Computer Network Security, ser. LNCS. Springer, 2010,
vol. 6258, pp. 321–328.

[5] J. Eichler and R. Rieke, “Model-based Situational Security Analysis,”
in Workshop on Models@run.time. CEUR, 2011, vol. 794, pp. 25–36.

[6] G. Keller, M. Nüttgens, and A.-W. Scheer, “Semantische Prozeß-
modellierung auf der Grundlage "Ereignisgesteuerter Prozessketten
(EPK)",” Veröffentlichungen des Instituts für Wirtschaftsinformatik (IWi),
Universität des Saarlandes, vol. 89, 1992.

[7] R. Rieke, E. Prieto, R. Diaz, H. Debar, and A. Hutchison,
“Challenges for advanced security monitoring – the MASSIF
project,” in Trust, Privacy and Security in Digital Business,
ser. LNCS, S. Fischer-Hübner, S. Katsikas, and G. Quirchmayr,
Eds. Springer, 2012, vol. 7449, pp. 222–223. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32287-7_23

[8] M. Achemlal, S. Gharout, C. Gaber, M. Llanes, E. Prieto, R. Diaz,
L. Coppolino, A. Sergio, R. Cristaldi, A. Hutchison, and K. Dennie,
“Scenario requirements,” MASSIF FP7-257475, Tech. Rep., 2011.

[9] W. Jack, S. Tavneet, and R. Townsend, “Monetary theory and electronic
money: Reflections on the kenyan experience,” Economic Quarterly,
no. 96, First Quarter 2010 2010.

[10] FINTRAC Typologies and Trends Reports, “Money laundering and
terrorist financing trends in fintrac cases disclosed between 2007 and
2011,” http://www.fintrac-canafe.gc.ca/publications/typologies/2012-04-
eng.asp#s1-1, April 2012, last visit on 21/05/2013.

[11] Internal Revenue Service (IRS), “Examples of money laundering
investigations - fiscal year 2012,” http://www.irs.gov/uac/Examples-of-
Money-Laundering-Investigations-Fiscal-Year-2012, October 2012, last
visit on 21/05/2013.

[12] P. Ochsenschläger, J. Repp, R. Rieke, and U. Nitsche, “The
sh-verification tool – abstraction-based verification of co-operating
systems,” Formal Aspects of Computing, The International Journal
of Formal Method, vol. 10, pp. 381–404, 1998. [Online]. Available:
http://sit.sit.fraunhofer.de/smv/publications/download/FormAsp.ps

[13] W. M. P. van der Aalst, “Formalization and verification of event-driven
process chains,” Information & Software Technology, vol. 41, no. 10,
pp. 639–650, 1999.

[14] M. Weber and E. Kindler, “The petri net markup language,” in Petri Net
Technology for Communication-Based Systems, ser. LNCS. Springer,
2003, vol. 2472, pp. 124–144.

[15] F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der Aalst,
“Monitoring business constraints with linear temporal logic: An approach
based on colored automata,” in Business Process Management (BPM
2011), ser. LNCS, vol. 6896. Springer, 2011, pp. 132–147.

[16] R. Rieke, R. Giot, and C. Gaber, “Predictive security analysis - concepts,
implementation, first results in industrial scenario,” 2013, talk at CYBER
SECURITY & PRIVACY EU FORUM 2013. [Online]. Available:
http://www.cspforum.eu/uploads/Presentation-Roland_Rieke.pdf

[17] C. Gaber, B. Hemery, M. Achemlal, M. Pasquet, and P. Urien, “Synthetic
logs generator for fraud detection in mobile transfer services,” in
Proceedings of the 2013 International Conference on Collaboration
Technologies and Systems (CTS2013), 2013.

[18] T. Fawcett, “Roc graphs: Notes and practical considerations for re-
searchers,” Pattern Recognition Letters, vol. 27, no. 8, pp. 882–891,
2004.

[19] W. M. P. van der Aalst, “Business process management: A comprehen-
sive survey,” ISRN Software Engineering, p. 37, 2013.

[20] A. Rozinat and W. van der Aalst, “Conformance checking of processes
based on monitoring real behavior,” Information Systems, vol. 33, no. 1,
pp. 64 – 95, 2008.

[21] VISA, “Security and trust at every level,” http://www.visaeurope.com/
en/about_us/security.aspx, last visit on 22/03/2013.

[22] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, “Data
mining for credit card fraud: A comparative study,” Decision Support
Systems, vol. 50, 2011.

[23] L. Delamaire, H. Abdou, and J. Pointon, “Credti card fraud and detection
techniques : a review,” Banks and Bank systems, vol. 4, 2009.

[24] C. Curry, R. L. Grossman, D. Locke, S. Vejcik, and J. Bugajski,
“Detecting changes in large data sets of payment card data: a case study,”
in Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, ser. KDD ’07, 2007, pp. 1018–
1022.

[25] E. Okutyi, “Safaricom tightens security on m-pesa with fraud
management system,” http://www.humanipo.com/news/1341/Safaricom-
tightens-security-on-M-Pesa-with-Fraud-Management-system, August
2012, last visited on 22/03/2013.

[26] Neural technologies, “Minotaurtm fraud detection software - finance sec-
tor,” http://www.neuralt.com/fraud_detection_software.html, last visited
on 23/03/2013.


