
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Original IEEE publication: https://doi.org/10.1109/PDP55904.2022.00046

Decision Tree-Based Rule Derivation for Intrusion
Detection in Safety-Critical Automotive Systems

Lucas Buschlinger
Roland Rieke

Fraunhofer SIT, Germany
studium@lucas-buschlinger.de
roland.rieke@sit.fraunhofer.de

Sanat Sarda
Fraunhofer
Singapore

sanat.sarda@fraunhofer.sg

Christoph Krauß
Darmstadt University of Applied Sciences

Germany
christoph.krauss@h-da.de

Abstract—Intrusion Detection Systems (IDSs) are being in-
troduced into safety-critical systems such as connected vehicles.
Since the behavior and effectiveness of measures are validated
before approval, the decisions made by an IDS are required to be
traceable and the IDS also needs to work efficiently on resource-
constrained embedded systems. These requirements complicate
the direct use of Machine Learning (ML) approaches in IDS
design. In this paper, we propose an approach to using ML
to generate rules for an efficient rule-based IDS like Snort.
Our approach eases the time-consuming and difficult process
of creating a rule set. We use decision trees to generate rules
that can be used by experts as a basis for creating a rule set for
a specific safety-critical use case. In addition, we use long short-
term memory methods to circumvent the problem of limited
training data availability, a common limitation in safety-critical
systems. Our implementation and evaluation shows the feasibility
of our approach to derive specific IDS rules for such systems.

Index Terms—intrusion detection, rule generation, machine
learning, anomaly detection, decision trees, long short-term
memory, automotive security.

I. INTRODUCTION

A major technology shift is currently taking place in safety-
critical systems. Commercial Off-The-Shelf (COTS) systems
and connectivity, also with the Internet, are typical character-
istics. For example, modern connected vehicles communicate
with the outside world and the technologies used in the vehicle
are also changing. Automotive Ethernet (AE), for example,
is replacing or supplementing classic technologies like the
Controller Area Network (CAN) bus. New protocols such as
Scalable service-Oriented MiddlewarE over IP (SOME/IP) [1]
are becoming standards for service-oriented communication in
the automotive sector. SOME/IP messages are transported over
UDP or TCP using an IP-based in-vehicle network.

However, cyber-attacks can now also take place via the
communication interfaces and security gaps in these new
protocols introduce new attack vectors that can eventually
access safety-critical vehicle functions [2]. The use of known
technologies and protocols also reduces the effort required by
attackers. Since even the best security measures can never fully
prevent attacks, IDSs are also being introduced into safety-
critical systems. These usually work as Network Intrusion De-
tection System (NIDS) and monitor network communication
for attacks.

However, integrating an IDS into safety-critical systems is
a major challenge, as they have to meet certain requirements.
Two aspects are of particular importance: traceability and
efficiency. Traceability is fundamentally important for safety-
critical systems, since behavior and effectiveness of measures
are validated before getting approval. This also applies to the
decisions made by an IDS when classifying attacks, as it is
necessary to determine exactly why an alert was generated.
Efficiency is important because safety-critical embedded sys-
tems mostly have strong resource constraints.

In classical networks, ML-based approaches are used on a
regular basis. These often have the advantage that they can also
detect unknown attacks by, e.g., learning the normal behavior.
However, these frequently represent black box systems, which
usually require a lot of resources and whose behavior is
not comprehensible. For example, for an IDS in a modern
connected vehicle, false positives should not occur. If, for
example, an extremely rare case occurs that a message is
sent to trigger the airbag (because an accident has actually
occurred), the IDS must not classify this as an attack. It
must be verifiable that the IDS classifies correctly, which is
difficult with ML-based approaches. The resource limitations
of embedded systems in a vehicle also make it difficult to use.

Rule-based systems are therefore an alternative, since their
behavior is verifiable and the matching of rules requires very
few resources (e.g., white-list policy in [2]). However, setting
up rules can be very time-consuming and difficult, as in-depth
knowledge is required and the rule set can quickly explode.

In this paper, we propose an ML-based IDS which com-
bines rule generation with deep learning data set extension.
Our approach is based on Decision Trees (DTs) to generate
traceable Snort rules which can be used by an expert as a
basis when creating a rule set for a specific safety-critical use
case. Furthermore, we incorporate a Long Short-Term Memory
(LSTM) network to extend the data set available to the rule
generator with the goal of mitigating the common issue of
lacking data. Our implementation and evaluation shows that
the system is feasible and yields rules significantly outper-
forming the detection rate of the baseline.

The remainder of this paper is structured as follows. In
Section II, we present background and discuss related work
before we introduce our proposed IDS in Section III. The

https://doi.org/10.1109/PDP55904.2022.00046

implementation is described in Section IV and the evaluation
in Section V. Finally, we conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

ML-based IDS applications often provide better detection
accuracy compared to hand-crafted rule-based IDS, but are
rarely deployed in safety critical systems because a lack
of insight into IDS results effectively prevents mitigation
actions [3]. The most common IDSs (e.g., Snort [4]) use
rules to detect intrusions. Rule generation is a laborious task
requiring expert knowledge and time. It is, hence, a desirable
goal to generate rules semi-automatically or automatically.
This has been done by deducting rules from labeled traffic
data or from system descriptions. For example, Monzer et
al. [5] present a rule generator which converts a system model
of a Cyber-Physical System (CPS) into anomaly-based IDS
rules. A similar approach by Nivethan and Papa [6] converts
behavioral descriptions into Snort rules. But these approaches
require an expert describing the system in detail, leading to
similar amounts of work as when generating IDS rules by
hand. Also, neither of these works fully evaluate their system’s
effectiveness in detecting attacks.

A more advanced approach is presented by Naik et al. [7].
Using Snort’s base rule set, the authors use Fuzzy Rule In-
terpolation (FRI) to generate rules that are similar to the
base rules. This generates a vast number of rules, many of
which are not effective in detecting attacks. They further use
a Genetic Algorithm (GA) to filter the best new rules and
detect attacks missed by Snort. Jin et al. also use FRI for
intrusion detection based on Snort’s baseline rule set [8].
However, no rules are directly generated and FRI is used for
traffic classification. Both studies provide no comparisons of
their system’s effectiveness to a publicly available data set
nor describe their actual rule generation in detail. Gomez et
al. [9] present MOEA-Snort, a multi-objective evolutionary
algorithm that uses a single aggregate objective function and
Pareto-optimization to optimize automatic rule generation in
order to detect anomalous traffic.

In more advanced ML rule-generation studies, Rastegari et
al. [10] compare if-then detection rules generated by their
GA implementation with those generated by DTs, k-Nearest-
Neighbors (KNN), and GA-based classifiers. For generating
IDS rules with ML, mostly DTs are used so far. Fallahi et
al. build DTs based on the ISCX 2012 data set with the goal
of deriving Snort rules [11]. Their derived rules can achieve
high F-measures of up to 0.988. However, a comparison to
Snort’s baseline performance is missing, as well as details on
rule derivation from a DT. A similar approach is taken by Soe
et al. in [12], but performance is not evaluated.

Using probability-based ML techniques, Ganesan et al.
propose a system for generating Snort rules based on Bayesian
abductive reasoning [13]. They built a Bayesian model, which
predicts how base Snort rules are most likely to change so
that they detect malicious traffic that has not been observed
yet. In their evaluation against a Netbios attack included in the
MACCDC 2012 data set, the new rules detect more malicious

packets. A straightforward comparison to baseline Snort is
nonetheless missing.

In [14], Kim et al. present an IDS, in which multiple
Deep Learning (DL) stages are combined into a single IDS.
Suggestions on alerts generated by AI-IDS to improve or gen-
erate new Snort rules are also provided. Ren et al. [15] propose
a Random Forest (RF)-based IDS where feature selection is
implemented using a GA and its results are evaluated by a
RF. Another RF-based anomaly detector is then trained on the
optimized data set. This combined system is shown to outper-
form other ML-techniques like KNN, Support Vector Machine
(SVM), and DT. In general, shallow ML-techniques have the
advantage of preserving the original data, making results more
interpretable. Shah and Issac [4] combine multiple ML-based
anomaly detectors as Snort plugins. The plugins based on
SVMs, DTs, Fuzzy Logic, and Bayes models analyze traffic
in parallel to Snort’s regular detector.

Automated rule generation also is combined with ML-based
anomaly detection in a hybrid IDS. Kaur and Singh propose
in [16] a second-stage LSTM for anomaly detection to feed
a signature generator. The generated rules are then given to
a first-stage signature-based IDS. Rule generation is done by
finding the longest common substring, which appears at least
a certain number of times in the malicious packets. However,
their evaluation only considers the detection capabilities of the
anomaly detector and not the impact of newly generated rules.

In [17], Khraisat et al. propose a hybrid IDS that combines
the C5 decision tree classifier (signature) and one-class SVM
(anomaly) that provides better results compared to the single
algorithms. In [18], Golrang et al. present a hybrid approach
where a multi-objective genetic method and an Artificial
Neural Network (ANN) run simultaneously to extract feature
subsets. Thereafter, the efficiency of the feature subsets is
evaluated by a RF ensemble method.

To summarize, many publications lack descriptions of actual
rule generation as well as a comparison of detection capabil-
ities with the baseline Snort rules.

III. IDS DESIGN

There are three main components of the proposed IDS. In
conjunction, these provide a comprehensive ML-based IDS
while combining state-of-the-art DL techniques with traceable
rule generation.

a) Rule-Based Detector: The main reasons for using
a rule-based detector are the very high traceability of its
decisions as well as its reduced complexity and superior
computing performance. This suits the typical requirements
of safety-critical environments well.

b) Rule Generator: The rule generator is responsible for
creating reliable and traceable rules for the rule-based detector
and is based on shallow ML techniques. The generator is
trained on a known labeled data set and rules are derived either
from or by the resulting model. In regular operation, the rule
generator is periodically retrained with an extended data set.
In this study, the extended data set is obtained by combining
the already available data with entries newly classified by the

anomaly detector. The goal is to incrementally create better
rules for the IDS’ detector when a broader database becomes
available, as well as rules for new attacks.

c) Anomaly Detector: The anomaly detector extends the
data set available to the rule generator. In our study, the
anomaly detector is DL-based and trained on known traffic
representing the environment the IDS works in. This baseline
data set is typically the same as the one used to train the rule
generator, at the start. Then, during regular IDS operation, the
anomaly detector records and classifies new data traffic inter-
cepted in the IDS’s environment. By combining the already
available data with the newly classified data, this results in an
extended data set for re-training the rule generator.

d) Traffic Logger: The traffic logger records all traffic
within the IDS’s operating environment. Logging traffic data
is needed to extend the data set via the anomaly detector.

Fig. 1. High-level IDS architecture

In the proposed architecture (see Figure 1), the main compo-
nents are distributed into two separate locations with varying
resources. The detector and traffic logger are installed in the
actual operating environment. The more resource-intensive
ML-based components, are moved to a backend. This has the
advantage that the relation between backend and operational
environment (e.g., connected vehicle) is not necessarily 1:1,
but can be 1:N . That is, a single backend instance can be
responsible for the rule generation for an arbitrary number of
detector instances and combine the traffic logs from multiple
sources. This way, anomalies seen in one instance of the IDS
can already be detected, corresponding rules generated, and
published before others are affected.

The network traffic within the IDS operating environment
passes through the rule-based detector as well as the traffic
logger. The detector applies its rule set to detect potential
attacks and generates a log. Taking preventive actions would
also be possible, but is not considered here. The traffic log
is sent to the backend and pre-processed for the anomaly
detector. The pre-processing is implementation-specific and
out-of-scope here.

In the backend, the anomaly detector classifies all new
traffic received from the traffic logger(s) to extend the available
data set. The extended data set is then transferred to the rule
generator, for retraining and the generation of a new set of
rules. The anomaly detector should be highly accurate to avoid

unnecessary False Positive (FP) rules. The newly generated
rules are finally transferred to the rule-based detector. This
cycle repeats continuously.

IV. IDS IMPLEMENTATION

The IDS implementation can be adapted to different types
of data sets. Unfortunately, no suitable data set representing
a safety-critical, e.g., automotive, environment was available.
We aim to remedy this in a follow-up work and use this proof
of concept to demonstrate the feasibility of the IDS’s overall
design. The UNSW-NB15 [19], a well-known and widely used
data set, is thus used for training and evaluating the IDS.
The base data set consists of 100 GB of network traffic.
Within the data set, fuzzing, network analysis, backdoor, DoS,
reconnaissance, shell code and worm attacks, as well as other
generic malicious data and exploits are present. The data
is split into two parts: the initial and operational training
sets. The first is the data that is initially available to train
the anomaly detector and generate the first set of rules. The
latter represents data that would be collected by the traffic
logger during the operation of the IDS and is used to simulate
extending the data set. Hence, this part of the data would
not be available in a real-life scenario at first but collected
over time. All data labeled as benign (class 0) and malicious
(class 1) is used, as we consider intrusion detection as a
binary classification problem in this paper. Figure 2 shows the
implemented components in this work in relation to Figure 1.

Fig. 2. Implemented High-level IDS architecture

A. Rule Generator

The current state of the art for automated rule generation
comprises in particular DTs and GAs. GAs evolve an existing
or random baseline rule set, e.g., Snort’s standard rules, by
changing features of the rules in each generation. Enhanced
rules are kept in the current population and the process repeats
until a stopping condition is reached. The results are well
explainable as a GA changes only the rule’s features, which are
typically well defined [20]. The GAs can also be tweaked [21].
Overall, GAs are a good option for automated rule generation,
but potential for overfitting is still present [20]. However, the
rule generator in our implementation is designed using a DT.
DTs are the easiest and most explainable method. Trained
on labeled network traffic, a DT learns which feature values

determine a malicious packet. As every branch is effectively an
if-then decision, paths within DTs can easily be translated into
IDS rules [11]. Mapping the considered features to the IDS’s
rule structure makes this even easier. The rule generator is
implemented in Python using the scikit-learn framework [22].

a) Feature Selection: DTs generally compute the impor-
tance of each feature and, hence, perform feature selection
automatically. However, using irrelevant features towards the
final rule generation incurs an unnecessary increase in the
consumption of resources and would also make the tree more
prone to overfitting [23]. A mapping between the UNSW-
NB15 data set’s features and available options for Snort
rules [24] is defined in Table I.

TABLE I
MAPPING OF UNSW-NB15 FEATURES AND SNORT RULE OPTIONS

UNSW-NB15 Feature Snort Rule Field

Snort Rule Header

proto Protocol
srcip Source IP address
sport Source Port
dstip Destination IP address
dport Destination Port

Snort Non-Payload Options

state (TCP) Flags
smean dsize
sttl TTL
is sm ips ports sameip

As listed, only 9 of the 49 features within the UNSW-NB15
data set can be used for filling fields in Snort rules during
rule generation. Among these are all the features necessary
for filling the header of Snort rules. Additionally, the label
feature denoting whether an entry is considered malicious or
not has to be used as only malicious entries should lead to alert
rules but both classes are present in the DT. Since we use both
the malicious and benign data, no extra subclasses for various
attack categories are considered for now. The non-payload
features, smean and sttl denoting the mean size of packets
from the source and the Time-to-Live (TTL) at the source
are used. In the UNSW-NB15 data set, these features are
also available for the destination. These were not considered
as Snort generally works in a source-to-destination direction.
The other remaining features of the data set could also not be
matched to the options of Snort rules. These features are very
limited in regard to the overall capabilities of Snort and its
rule structure, e.g., the inspection of package contents.

b) Training: The data is pre-processed before passing
it to the model using the Pandas library [25]. Prior to pre-
processing the actual features, the data set is balanced to avoid
a potential bias towards the benign class [26], if necessary.
Balancing is performed by randomly sub-sampling the ma-
jority, i.e., benign class, to match the number of entries in
the minority, i.e., malicious class. In this IDS implementation,
50000 entries are selected from the original data set. This is

due to memory restrictions, as the DT implementation pro-
vided by scikit-learn transforms sparse arrays, used by Pandas,
into dense arrays. Sparse arrays result from one-hot encoding
categorical data (IP addresses, port numbers, the protocol
identifier, and the state flag). This is a necessary step, as the DT
implementation by scikit-learn does not support categorical
values but only numerical ones, whereas DTs typically are able
to handle mixed data (see e.g., [27]). Hence, all non-values,
like NAs and empty strings, are replaced with zeros. The DT
is then fitted and evaluated using 2⁄3 of the data for training
and the remainder for testing, respectively. Predictions, i.e.,
classifications, of the testing data are obtained using the
model’s class predict function. Performance measures are
calculated through scikit-learn’s performance scoring functions
based on the predicted and actual labels.

c) Rule Derivation: Rule derivation is divided into two
tasks, the first is to get the decision paths from the tree by
traversing it and the second to compose the rules from the
information held by the decision paths. Note that we are only
creating single-packet rules in this work. Nonetheless, multi-
packet rules considering consecutive packets are an option
within Snort and are of interest for our further developments.
All possible decision paths are obtained by traversing the
structure using scikit-learn’s decision_path function on
the DT in conjunction with the data used for fitting the tree,
i.e., the training set. The decision paths list the indices of
the nodes passed while traversing the tree during a decision
process. Using the list of indices, the tree can now be traversed
to obtain the values of the decision paths. Listing 1 sketches
the algorithm used in pseudo-Python.

Listing 1
TRAVERSING THE DT

1 for node_index in node_indices[:-1]:
2 DP_features.append(tree.feature[node_index])
3 DP_thresholds.append(

tree.threshold[node_index])
4 if DP[node_index+1] ==

tree.children_left[node_index]:
5 DP_decisions.append(0)
6 elif DP[node_index+1] ==

tree.children_right[node_index]:
7 DP_decisions.append(1)
8 DP_verdict = max(tree.value[node_indices[-1]])

In lines 1 through 7, the algorithm iterates over the node
indices of the decision path, except the last node, i.e., the
leaf, as it does not contain a decision. In line 2, the features
of all nodes along the path are stored (e.g., proto or sttl)
and in line 3 the thresholds to either go left or right are
stored. The decision in the current node is then checked in
lines 4-5 and 6-7, respectively. If the decision is to go to
the left child (i.e., the feature is less than or equal to the
threshold), this is denoted with a zero and if it is to go right
(i.e., the feature is greater than the threshold), its denoted with
a one. Lastly, the verdict of the decision path, i.e., whether or
not this path leads to a classification as benign (class 0) or
malicious (class 1), is stored. The information obtained from
the decision paths is converted to a dictionary containing a
mapping between the features and their decision. The mapping

has the form feature name : [threshold value,
decision]. An unordered dictionary is sufficient here as the
order of decision is not important for deriving rules. To end the
traversal step, paths with a benign verdict are dropped. As the
last step, Snort rules are composed from the decision paths by
mapping the features and their decisions in the DT’s nodes to
the possible options in the rules. Numerical value features like
TTL and dsize can easily be mapped, as they only appear once
per path and the decision of whether this feature is less-equal
or greater is supported by Snort (e.g., ttl:<55;). Categorical
features can either be mapped to their equivalents in Snort
rules or combined to lists. The protocol and state features
have corresponding equivalents in Snort, although the UNSW-
NB15’s proto field contains more diverse identifiers. TCP is
simply set as the protocol in the rule, when the value from
the decision path is not directly supported by Snort. Similarly,
state flags are only supported for TCP and are ignored if the
decision path contains a negated or unsupported flag.

Most importantly, every Snort rule needs to fill the rule
header with the appropriate values (see also Table I) for the
source and destination addresses and ports. As IP addresses
and port numbers are identifiers, these are also categorical.
Negated addresses and ports are supported by Snort. There-
fore, all IPs are joined to lists for the source and destination
IPs. The same is implemented for ports. In case no value for
one of these four fields is present in the decision path, Snort’s
any wildcard is used. Full wildcard rules consisting only of
any values in the header are removed, as they would alert
on every packet. Lastly, the generated rule set is filtered for
duplicates and written to a rule file to be passed to Snort.
Listing 2 shows two exemplary rules derived from DTs. Note
that non-detecting options like the msg, sid, and priority are
simply set to default values.

Listing 2
EXEMPLARY RULES DERIVED FROM DTS

alert tcp [175.45.176.2] [63167] ->
[149.171.126.14] [179] (msg:"Alert rule
derived from Decision Tree"; sid:3000006;
priority:1;)

alert tcp [175.45.176.1] [34180, !21170] ->
[149.171.126.17, !10.40.182.255,
!149.171.126.13] [179] (msg:"Alert rule
derived from Decision Tree"; sid:3000034;
priority:1; dsize:>52; ttl:>61;)

Figure 3 shows a small examplary DT ready for rule
derivation. As can be seen, the first path to the right would
lead to class y[0]. This path is considered to be benign
and will, hence, not be converted into a rule. Consequently,
only paths ending in a leaf node with class = y[1]
will result in an alert rule. In Figure 3, this means the
resulting rule would be a combination of source IP not being
175.45.176.2, destination port being 63167, and destination IP
not being 175.45.176.3. As a Snort rule this would be alert
tcp [!175.45.176.2] any -> [!175.45.176.3]
[63167] (msg:"...") (source port is set to any as none
was given in the DT’s path).

Fig. 3. Examplary DT ready for rule derivation

B. Anomaly Detector

Although in Deep Neural Networks (DNNs) in general the
inner workings of the model remain hidden and traceability
of results is difficult, the performance in intrusion detection
outperforms that of shallow techniques [28], [29]. Convolu-
tional Neural Network (CNN)-based anomaly detectors per-
form slightly better than regular DNNs [28], [29]. Recur-
rent Neural Networks (RNNs) include cycles and can capture
context, e.g., temporal dependencies. It has been shown by
Taylor et al. [30] that with respect to detection of automotive
cyber-attacks RNNs are vastly superior to the other methods
with LSTMs having the overall best average performance.
Since we aim for intrusion detection in the area of safety-
critical systems such as networked vehicles, we assume that
LSTMs is the most suitable type of RNNs for this. Thus,
for the evaluation of our concept, a LSTM is implemented
in Python using the Keras [31] and Tensorflow [32] libraries.

a) Feature Selection: For the LSTM, only the attack cat
feature (nominal name of each attack category) is dropped
from the data set as anomaly detection is considered as a
binary classification problem here. Besides that, the LSTM
automatically selects the most relevant features and weighs
them accordingly. Although selecting features would reduce
the complexity of the model and resource consumption, this
becomes less significant, as this component is designed to be
implemented in the backend with vast resources.

b) Training: Training the LSTM is straightforward and
performed on the initial training data set. After evaluation, the
LSTM’s architecture of a single hidden layer with 128 LSTM
units, together with Sigmoid as the activation function, binary
cross-entropy as the loss function, and Adam as the optimizer
was selected. Before passing the data set to Keras for the actual

training, the data set is loaded and pre-processed using Pandas.
However, pre-processing is kept to a minimum, and only the
IP addresses, the protocol identifier, the service identifier, and
the state flags contained within the UNSW-NB15 data set
are transformed to integer values and non-integers replaced
with zeros. During training, 10-fold cross-validation is used
to validate the model, the performance of which is retrieved
using Keras evaluate function.

c) Traffic Data Classification: For classification, the new
unseen traffic data collected in the operational environment is
passed through the LSTM. We assume that the raw traffic
data has already been processed and prepared (e.g., removing
data already recognized as malicious by the IDS by filtering
based on the alert log) for use in the anomaly detector. In
this implementation, this is simulated by using the operational
training data set. This data is loaded and prepared in the same
way as described above but not filtered.

To classify the data, the stored LSTM model is loaded from
memory and the data, without the labels, passed to the model’s
predict function. This returns a value between 0 and 1 due
to the nature of the Sigmoid function. Hence, predicted labels
are derived by rounding to either 0 or 1. As the actual labels
for this data are available, which would not be the case in
a real implementation, the performance of the final model is
also evaluated on this unseen data. Finally, the predicted labels
are put into the operational training data set, replacing the
actual labels, and the data set is written to a CSV file as the
LSTM classified data set. This latter and the initial training set
represent the extended data.

C. Rule-Based Detector

As the actual component responsible for detecting malicious
traffic was not the main focus of this IDS implementation,
Snort version 3 [33] was deployed. Snort has the advantage
of being a well-performing rule-based IDS, even in resource-
constraint devices [34], and fits our use case well. Many basic
rule sets are already available, making the evaluation of the
detector’s baseline performance straightforward.

To assess the performance of Snort, either with the baseline
rule set as well as the generated rules, the alerts have to
be matched with the ground truth. Hence, some kind of
information about whether or not a packet is malicious has to
be encoded within the data. As Snort’s detection mechanisms
work on and above Layer 3, Media Access Control (MAC)
addresses can be used for this. Hence, the original PCAP
files of all data sets were augmented with MAC addresses
indicating malicious and benign packets. We implement this
by matching the IP addresses, ports, and timestamps of
packets with the ground truth table provided in the UNSW-
NB15 data set. If a packet matches an attack or malicious
record in the table, its destination MAC address is set to the
DE:AD:BE:EF:00:00 magic value. The address is zeroed,
in case no match is found.

The logs are generated using Snort’s CSV alert mode
with the corresponding features. For evaluation, all duplicate
alerts are removed first. Then, all alerts containing the magic

value DE:AD:BE:EF:00:00 MAC address are counted as
True Positives (TPs), as they are alerts for malicious pack-
ets. In contrast, all other alerts are counted as FPs, since
these alerts were generated for benign packets. Furthermore,
False Negatives (FNs) are calculated by getting the difference
between the known total number of malicious packets and
the TPs (|FN | = |malicious| − |TP |). The True Negatives
(TNs) are the remainder of all unaccounted packets, i.e., the
difference between the total number of packets and the sum of
the TPs, FPs, and FNs (|TN | = |packets| − (|TP |+ |FP |+
|FN |)).

V. IDS EVALUATION

This section presents the evaluation of the IDS design and
its proof-of-concept implementation.

A. ML System Accuracy

In the following, we analyze how well our individual ML
components generalize to the data at hand. The ML-specific
accuracies generally fall in line with those that the related
works (e.g., [11], [28], [29]) have observed. The accuracies
have been evaluated on the following testbed, simulating
the backend: For hardware, an AMD Ryzen 5 2600X with
16 GB of main memory, the testbed’s operating software
is Windows 10, Python 3.8.5 within Windows 10’s Linux
subsystem (WSL) in version 2 is used to run the Python code
and the Python libraries viz. Pandas 1.1.5, Numpy 1.18.5,
scikit-learn 0.23.2, Keras 2.4.3, and Tensorflow 2.3.1 are used.

a) DT Rule Generator Accuracy: To evaluate the DT,
each combination of training, traversing, and deriving rules
was repeated 10 times. The results are the averages of these
individual outcomes. Full k-fold validation was not feasible
due to the aforementioned memory restrictions.

Overall, the DT works well on the UNSW-NB15 data set.
As shown in Table II, accuracy, precision, and recall are all
over 98%. The F1-scores are continuously larger than 0.99,
too. Extending the initial data set with data classified by
the anomaly detector demonstrates a beneficial effect on the
overall accuracy. This largely is because of a better overall
distribution of the data selected for training. Selecting all
features as mapped instead of only those matching the rule
header provides minor differences. Since the IPs and ports
have to be one-hot encoded, these typically already comprise
up to 32000 features. Adding four more features is, therefore,
only a minor difference.

While these scores are excellent, FPs are still present.
This potentially results in FP rules being created and benign
packages being classified as malicious. In principle, the same
is true for FNs, but no rules for letting benign traffic pass are
created. Nonetheless, FNs can result in missing rules for data
wrongly classified as benign. These points emphasize the need
for a highly accurate model as the basis for rule generation.

In terms of computational performance, listed in Table III,
the training and processing times of the DT during rule
derivation are good for a proof-of-concept implementation.
Note that these performance numbers represent the systems

TABLE II
ML-PERFORMANCE OF THE DT WITH DIFFERENT UNSW-NB15 DATA

SETS AND FEATURES

Features Data set Accuracy Precision Recall F1-Score

Header Initial 99.183% 98.573% 99.809% 0.991
Header Extended 99.795% 99.732% 99.860% 0.998
All Initial 99.210% 98.744% 99.685% 0.992
All Extended 99.832% 99.857% 99.808% 0.998

that are intended to run on a powerful backend. These numbers
can thus only indicate the potential load on said backend
and do not represent the computational performance of the
IDS within its operational environment, e.g., a safety-critical
automotive controller. Nonetheless, the overall performance
of the backend directly influences, for example, the minimum
period in which rules can be updated. Interestingly, using all
of the mapped features increases the times taken significantly.
Moreover, training the DT with the extended data set results
in a broader but shallower tree. This means that the DT also
generates more decision paths. This explains the improved
performance discussed above, as the DT generalizes better.
Nonetheless, it has to be noted that this has to be due to a
better distribution within the data itself.

TABLE III
COMPUTATIONAL AND TEMPORAL PERFORMANCE OF THE DT ON

UNSW-NB15

Features Data Set Training Traversal Depth Leaves

Header Initial 3.896s 1.952s 45 52
Header Extended 4.202s 1.877s 23 79
All Initial 28.900s 8.841s 62 49
All Extended 35.400s 10.604s 24 61

b) LSTM Anomaly Detector: The LSTM works well on
learning and classifying the UNSW-NB15 data set. Table IV
shows the performance of the LSTM model during training
and when classifying the unseen operational training set.
During training, accuracy, precision and recall is high, over
98%, and loss is very low at just 0.022. The excellent F1-
score is 0.993. When classifying new data, i.e., the operational
training set, accuracy is very good with 98.671%. Recall is
excellent at 99.996%, which implies that only 8 out of 215260
malicious entries were not detected. In contrast, precision of
87.432% depicts that a larger number of benign entries, 30941
out of 2081800, were mis-classified as malicious. Overall, the
F1-score of 0.933 indicates that the LSTM is working well for
anomaly detection based on binary classification.

B. Detection Performance of Generated Rules

For evaluation, two experiments are performed. In each
experiment, rules are generated using the initial training data
set and its extension with the LSTM classified data set. For
each of the data sets, rules with and without negated field
values, are generated. This results in four types of rules for

TABLE IV
LSTM PERFORMANCE ON UNSW-NB15 DATA SET

Mode Accuracy Precision Recall F1 Loss Time

Train 99.279% 98.625% 99.952% 0.993 0.022 475.100s
Classify 98.671% 87.432% 99.996% 0.933 - 996.748s

each experiment: initial training set without negated fields,
initial training set with negated fields, extended classified data
set without negated fields, and extended classified data set with
negated fields. Rules are generated and evaluated five times per
experiment, as the DT implementation is not deterministic.

a) Baseline Rules: To measure the baseline rule set
performance, the network traces are evaluated using Snort’s
community rules [35]. Only a fraction of malicious packets
is detected with a recall of 2.228%, precision of 2.237%, and
a F1-score of 0.022. A high accuracy of 98.150% shows that
this metric alone is not very meaningful.

b) Header-Only Rules: In a first experiment, rules are
only generated by considering the IP, port, and protocol fields
of Snort, i.e., the header fields. Figure 4 shows that a high
accuracy of over 97% is achieved for each of the four rule
set types. Except for the extended data set with negated rules,
precision, recall, and F1-scores are over 60%, 65%, and 0.63,
respectively. The fourth type of rule performs slightly worse,
with a precision of 41.219% and an F1-score of 0.45. Recall
is equal and, hence, the same number of malicious packets
are detected but more benign packets are being misclassified.
Overall, these types of rules provide a significantly better
detection performance than the baseline community rule set
but extending the classified data set is not beneficial.

Accuracy Precision Recall F1 Score
Metric

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Initial Training Set - Without negated
Initial Training Set - With negated
Extended Dataset - Without negated
Extended Dataset - With negated

Fig. 4. Classification results - Header-Only Rules

c) Full Rules: In a second experiment, all features in
Table I are considered. However, this leads to a significant
decrease in performance compared to header-only rules. One
possible reason is that the non-payload rule options are too
generic for precise detection and simply fit too many packets.

d) Comparison to Other Works: Other works implement-
ing intrusion detection for the UNSW-NB15 dataset have
achieved similar results. In their work [36], Faker et al. use
several techniques, DNN, RF, and Gradient Boosted Tree.

For binary classification, they are able to achieve accuracies
of 99.19%, 98.86%, 97.92%, respectively. Unfortunately, no
other metrics were reported. In [15], Ren et al. implement an
RF-based IDS with multiclass class classification. Their sys-
tem reaches accuracies of over 93% for all classes. However,
precision, recall, and F1-scores vary widely between the attack
classes and range from less than 10% for the analysis attack
class to over 95% for the generic attack class. Averaged, the
system reaches precision, recall, and F1-scores of around 60%,
similar to what is presented in this work.

C. Discussion

In general, our proof of concept demonstrates that the IDS
works as intended. While a full live demonstration using
alternate network traffic captured during operation was not
possible within the scope of this first proof of concept, we
intend to deploy a further prototype in a real-world scenario
(e.g., a connected vehicle) to validate the aspect of updating
rules in the long run. Our implementation also shows that
distributing more resource-intensive components to a vastly
more powerful backend makes sense. The performance shows
that the designed IDS is a relatively good classifier but using
the generated rules, in a realistic scenario, may not be as
straightforward as in this proof-of-concept implementation.
Whereas the baseline rule set is not performing well, with a
very low detection rate, the designed ML-IDS generated rules
alert on far more malicious packets. This is shown by the up
to 30 times higher F1-score and recall values compared to
baseline performance. Such an increase can be expected, as
the community rules are very general and our generated rules
are tailored specifically to the data.

However, the precision scores of maximum 60% show a
large number of false positives are also generated. This is also
reflected in the F1-scores, which reach a maximum of 0.63
when using the header-only rules. The inclusion of negated
rule options (e.g., IPs or ports) is also not beneficial. As it
appears that Snort ORs the entries within an array of, e.g.,
IPs, having just a single IP matched fulfills the condition for
the array. This is easily the case with negated values, as only
one such IP or port can be present in a packet’s header. Thus,
incorporating negated values is not helpful.

So far, the additional data classified by the LSTM anomaly
detector does not increase performance. This is attributed to
the fact, that the training data for the anomaly detector (LSTM)
and rule generator (DT) come from the same data set and,
hence, have the same characteristics. In the future development
of our system, we have to investigate training the components
with differing data. Furthermore, the translation from the ML
components into rules has to be vastly improved. Both the
LSTM and DT are performing exceptionally well on their own,
but the resulting rules do not reach similar levels yet. The
overall performance hence suggests to conduct a more precise
analysis of the generated rules before deploying, especially
considering the requirements of safety-critical systems.

The most prevalent limitation of the IDS is definitely the too
low performance. The detection and FP rates shown in Sec-

tion V-B would not be suitable to the targeted safety-critical
environment. Observed limiting factors are the, comparably,
low number of usable features from the data set and the lack
of payload-based features. We, hence, suggest looking into
GAs for payload-based rules as they can work on this type
of data but also on the categorical data used herein. Similarly,
training the anomaly detector (in this case the LSTM) as a
binary classifier limits it to only recognizing the attacks it
has been trained with. Training the anomaly detector to only
know legitimate traffic, which is known especially in safety-
critical environments, can therefore be a better option. For
example, this can be realized by deploying an autoencoder as
the anomaly detector and training it on the benign traffic.

In comparison to the related work, the IDS provides a novel
approach but shares similarities with some of the works. The
overall design is similar to the one presented by Kaur and
Singh [16]. In their design, the LSTM is a second stage
used for detecting anomalies that have slipped past the first
rule-based component. Furthermore, their rule generation uses
substring matching to generated if-then rules instead of using
ML for generating Snort rules. Offloading the computationally
more expensive ML-based operations to a backend is similar
to the approach presented by Loukas et al. [37]. However, their
system fully moves intrusion detection to the cloud, making
it dependent on the car being online. The system proposed in
this paper can also perform intrusion detection when the car
is offline.

VI. CONCLUSION

We propose a multi-stage ML-based IDS which combines a
traceable DT-based rule generator with a DL-based anomaly
detector for extending the data set used by the generator.
It is evaluated with the well-known UNSW-NB15 data set.
Our approach is adapted to the requirements of safety-critical
systems, particularly traceability and efficiency. As an exam-
ple, we had the safety-relevant systems in, e.g., a vehicle
using automotive Ethernet in mind. Overall, the performance
shows the IDS can be implemented and effectively deployed
for the target use-cases. The production-ready IDS solution,
will however be more complex and require deeper analysis
of created rules. Experts can use the generated rules as input
when creating a new rule set, e.g., in scenarios like vehicular
Ethernet networks where no rules are available yet. The
easy interpretability of DTs also allows traceable results to
be generated. Traceable decisions will allow developers to
determine which rules fired and how they were generated.
The use of a DL-based approach to expand the data set of
the rule generator could, however, be viewed as too opaque,
since errors spread to the generated rules and ultimately lead to
incorrect classifications by the IDS. As future work, we intend
to demonstrate the adaptability of our solution to different
types of data sets, such as traces from automotive Ethernet
networks.

ACKNOWLEDGMENT

This research work has been partly funded by the German
Federal Ministry of Education and Research (BMBF) and the
Hessen State Ministry for Higher Education, Research and the
Arts within their joint support of the National Research Center
for Applied Cybersecurity ATHENE and by the BMBF project
VITAF (ID 16KIS0835). Additionally, the project leading
to this application has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 883135 (E-Corridor).

REFERENCES

[1] AUTOSAR. (2019, 11) SOME/IP protocol spec-
ification. Last accessed on 2021-07-29. [Online].
Available: https://www.autosar.org/fileadmin/user upload/standards/
foundation/19-11/AUTOSAR PRS SOMEIPProtocol.pdf

[2] T. Gehrmann and P. Duplys, “Intrusion detection for some/ip: Challenges
and opportunities,” 2020 23rd Euromicro Conference on Digital System
Design (DSD), pp. 583–587, 2020.

[3] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE Symposium on
Security and Privacy, 2010, pp. 305–316.

[4] S. A. R. Shah and B. Issac, “Performance comparison of intrusion
detection systems and application of machine learning to snort system,”
Future Generation Computer Systems, vol. 80, p. 157–170, 03 2018.

[5] M. H. Monzer, K. Beydoun, and J. Flaus, “Model based rules generation
for intrusion detection system for industrial systems *,” in 2019 Inter-
national Conference on Control, Automation and Diagnosis (ICCAD),
2019, pp. 1–6.

[6] J. Nivethan and M. Papa, “Dynamic rule generation for scada intrusion
detection,” in 2016 IEEE Symposium on Technologies for Homeland
Security (HST), 2016, pp. 1–5.

[7] N. Naik, R. Diao, and Q. Shen, “Dynamic fuzzy rule interpolation and its
application to intrusion detection,” IEEE Transactions on Fuzzy Systems,
vol. 26, no. 4, pp. 1878–1892, 2018.

[8] S. Jin, Y. Jiang, and J. Peng, “Intrusion detection system enhanced
by hierarchical bidirectional fuzzy rule interpolation,” in 2018 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2018, pp. 6–10.

[9] J. Gómez, C. Gil, R. Baños, A. Márquez, F. Montoya, and M. Montoya,
“A pareto-based multi-objective evolutionary algorithm for automatic
rule generation in network intrusion detection systems,” Soft Computing,
vol. 17, 07 2012.

[10] S. Rastegari, P. Hingston, and C.-P. Lam, “Evolving statistical rulesets
for network intrusion detection,” Applied Soft Computing, vol. 33, pp.
348 – 359, 2015.

[11] N. Fallahi, A. Sami, and M. Tajbakhsh, “Automated flow-based rule
generation for network intrusion detection systems,” in 2016 24th
Iranian Conference on Electrical Engineering (ICEE), 2016, pp. 1948–
1953.

[12] Y. Soe, Y. Feng, P. Santosa, R. Hartanto, and K. Sakurai, “Rule
generation for signature based detection systems of cyber attacks in
iot environments,” Bulletin of Networking, Computing, Systems, and
Software, vol. 8, no. 2, 2019.

[13] A. Ganesan, P. Parameshwarappa, A. Peshave, Z. Chen, and T. Oates,
“Extending signature-based intrusion detection systems with bayesian
abductive reasoning,” 2019.

[14] A. Kim, M. Park, and D. H. Lee, “AI-IDS: Application of deep learning
to real-time web intrusion detection,” IEEE Access, vol. 8, pp. 70 245–
70 261, 2020.

[15] J. Ren, J. Guo, W. Qian, H. Yuan, X. Hao, and H. Jingjing, “Building an
effective intrusion detection system by using hybrid data optimization
based on machine learning algorithms,” Security and Communication
Networks, vol. 2019, p. 7130868, 06 2019.

[16] S. Kaur and M. Singh, “Hybrid intrusion detection and signature
generation using deep recurrent neural networks,” Neural Computing
and Applications, vol. 32, no. 12, pp. 7859–7877, 06 2020.

[17] A. Khraisat, I. Gondal, P. Vamplew, J. Kamruzzaman, and A. Alazab,
“Hybrid intrusion detection system based on the stacking ensemble
of c5 decision tree classifier and one class support vector machine,”
Electronics, vol. 9, no. 1, 2020.

[18] A. Golrang, A. M. Golrang, S. Yildirim Yayilgan, and O. Elezaj, “A
novel hybrid ids based on modified nsgaii-ann and random forest,”
Electronics, vol. 9, no. 4, 2020.

[19] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),” in
2015 Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1–6.

[20] R. H. Gong, M. Zulkernine, and P. Abolmaesumi, “A software imple-
mentation of a genetic algorithm based approach to network intrusion
detection,” in Sixth International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing
and First ACIS International Workshop on Self-Assembling Wireless
Network, 2005, pp. 246–253.

[21] J. Gómez, C. Gil, R. Baños, A. L. Márquez, F. G. Montoya, and M. G.
Montoya, “A pareto-based multi-objective evolutionary algorithm for
automatic rule generation in network intrusion detection systems,” Soft
Computing, vol. 17, no. 2, pp. 255–263, 02 2013.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[23] O. Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, and A. Mouzakitis,
“Intrusion detection systems for intra-vehicle networks: A review,” IEEE
Access, vol. 7, pp. 21 266–21 289, 2019.

[24] Cisco - The Snort Project. Snort users manual - rules
headers. [Online]. Available: http://manual-snort-org.s3-website-us-
east-1.amazonaws.com/node29.html

[25] The pandas development team. (2020, Feb.) pandas-dev/pandas: Pandas.
[Online]. Available: https://doi.org/10.5281/zenodo.3509134

[26] M. Gharib, B. Mohammadi, S. H. Dastgerdi, and M. Sabokrou, “Autoids:
Auto-encoder based method for intrusion detection system,” 2019.

[27] The Mathworks Inc. Splitting categorical predictors in classification
trees. [Online]. Available: https://mathworks.com/help/stats/splitting-
categorical-predictors-for-multiclass-classification.html

[28] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep
learning for cyber security intrusion detection: Approaches, datasets, and
comparative study,” Journal of Information Security and Applications,
vol. 50, p. 102419, 2020.

[29] H. Liu and B. Lang, “Machine learning and deep learning methods for
intrusion detection systems: A survey,” Applied Sciences, vol. 9, no. 20,
p. 4396, 10 2019.

[30] A. Taylor, S. P. Leblanc, and N. Japkowicz, “Probing the limits of
anomaly detectors for automobiles with a cyber attack framework,” IEEE
Intelligent Systems, vol. PP, no. 99, pp. 1–1, 2018.

[31] F. Chollet et al., “Keras,” https://keras.io, 2015.
[32] TensorFlow Developers. (2021, Dec.) Tensorflow. [Online]. Available:

https://doi.org/10.5281/zenodo.5799851
[33] The Snort development team. Snort3. Last accessed on 2022-01-24.

[Online]. Available: https://github.com/snort3/snort3
[34] T. Zitta, M. Lucki, L. Vojtech, M. Neruda, and L. Mejzrova, “Experi-

mental load test statistics for the selected ips tools on low-performance
iot devices,” Journal of Electrical Engineering, vol. 70, no. 4, pp. 285–
294, 08 2019.

[35] The Snort community. Snort community rules. Last accessed on 2021-
01-12. [Online]. Available: https://www.snort.org/downloads/registered/
snortrules-snapshot-3034.tar.gz

[36] O. Faker and E. Dogdu, “Intrusion detection using big data and deep
learning techniques,” in Proceedings of the 2019 ACM Southeast Con-
ference, ser. ACM SE ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 86–93.

[37] G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon, and D. Gan,
“Cloud-based cyber-physical intrusion detection for vehicles using deep
learning,” IEEE Access, vol. 6, pp. 3491–3508, 2018.

