
Uniform Parameterisation of
Phase Based Cooperations

Peter Ochsenschläger and Roland Rieke

Fraunhofer SIT Technical Report
SIT-TR-2010/1

03 2010

Fraunhofer-Institut für Sichere
Informationstechnologie SIT
Rheinstrasse 75
D-64295 Darmstadt
www.sit.fraunhofer.de



IMPRINT

Publisher:

Fraunhofer-Institut für Sichere
Informationstechnologie SIT
Rheinstrasse 75
D-64295 Darmstadt
Germany

Phone: +49 (0) 6151/869-213
Fax: +49 (0) 6151/869-224
E-Mail: info@sit.fraunhofer.de
Internet: www.sit.fraunhofer.de

Fraunhofer SIT Technical Report
SIT-TR-2010/1

03 2010

ISSN 1863-284X

All rights reserved including the right of reproduction in whole or in parts in any
form.

All product names mentioned herein are the trademarks of their respective owners.

All publications of the Fraunhofer SIT Technical Report series can be obtained
from the address above.

c© 2010 Fraunhofer-Institut für Sichere Informationstechnologie SIT



Uniform Parameterisation of
Phase Based Cooperations

Peter Ochsenschläger and Roland Rieke
Fraunhofer-Institute for Secure Information Technology SIT

Uniform parameterisations of phase based cooperations are defined in terms of formal language
theory. For such systems of cooperations a kind of self-similarity is formalised. Based on deter-

ministic computations in shuffle automata a sufficient condition for self-similarity is given. Under

certain regularity restrictions this condition can be verified by a semi-algorithm.

Key Words: cooperations as prefix closed languages, abstractions of system behaviour, self-

similarity in systems of cooperations, iterated shuffle products, deterministic computations in

shuffle automata

1. INTRODUCTION

As an example for cooperations let us consider an e-commerce protocol, that de-
termines how two cooperation partners have to perform a certain kind of financial
transactions. As such a protocol should work for several partners in the same man-
ner, it is parameterised by the partners and the parameterisation should be uniform
w.r.t. the partners.

To be able to verify entire families of parameterised systems, independent of
the exact number of replicated components, in [Ochsenschläger and Rieke 2007]
we developed an abstraction based approach to extend our current tool supported
verification techniques to such systems.

In this paper (Sect. 2) we formalise uniform parameterisations of two-sided co-
operations in terms of formal language theory, such that each pair of partners
cooperate in the same manner, and that the mechanism (schedule) to determine
how one partner may be involved in several cooperations, is the same for each
partner. Generalising each pair of partners cooperating in the same manner, the
following kind of self-similarity is desirable for such systems of cooperations: From
an abstracting point of view, where only actions of some selected partners are con-
sidered, the complex system of all partners behaves like the smaller subsystem of
the selected partners.

The main goal of this paper is a sufficient condition for this self-similarity (Sect. 6).
The main concepts for such a condition are structuring schedules into phases, which
may be shuffled in a restricted manner (Sect. 3), and shuffle automata, whose de-
terministic computations unambiguously describe how a cooperation partner is in-
volved in several phases (Sect. 4 and 5). For the notion of self-similarity it is of
interest to know, which kind of dynamic system properties are compatible with our
notion of abstraction. This is discussed in Sect. 6.

Contact address: Fraunhofer-Institute for Secure Information Technology SIT, Rhein-
strasse 75, D-64295 Darmstadt, Germany, Web: http://www.sit.fraunhofer.de, E-Mail:

peter-ochsenschlaeger@t-online.de and roland.rieke@sit.fraunhofer.de

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



4 · P. Ochsenschläger and R. Rieke

In [Jantzen 1985] the operations shuffle and iterated shuffle and in [Jedrzejowicz
1999] and [Jedrzejowicz and Szepietowski 2001] structural properties of shuffle au-
tomata are analysed and an algorithm for assigning a shuffle expression denoting
the language of the automaton is given. In [Björklund and Bojanczyk 2007] the
close connection between shuffle expressions and multicounter automata is demon-
strated.

Examples for the theory developed will be given in a forthcoming paper.

2. PARAMETERISED COOPERATIONS

The behaviour L of a discrete system can be formally described by the set of its
possible sequences of actions. Therefore L ⊂ Σ∗ holds where Σ is the set of all ac-
tions of the system, and Σ∗ (free monoid over Σ) is the set of all finite sequences of
elements of Σ, including the empty sequence denoted by ε. This terminology origi-
nates from the theory of formal languages [Sakarovitch 2009], where Σ is called the
alphabet (not necessarily finite), the elements of Σ are called letters, the elements
of Σ∗ are referred to as words and the subsets of Σ∗ as formal languages. Words
can be composed: if u and v are words, then uv is also a word. This operation is
called the concatenation; especially εu = uε = u. A word u is called a prefix of a
word v if there is a word x such that v = ux. The set of all prefixes of a word u is
denoted by pre(u); ε ∈ pre(u) holds for every word u.

Formal languages which describe system behaviour have the characteristic that
pre(u) ⊂ L holds for every word u ∈ L. Such languages are called prefix closed.
System behaviour is thus described by prefix closed formal languages.

Different formal models of the same system are partially ordered with respect
to different levels of abstraction. Formally, abstractions are described by so called
alphabetic language homomorphisms. These are mappings h∗ : Σ∗ −→ Σ′∗ with
h∗(xy) = h∗(x)h∗(y) , h∗(ε) = ε and h∗(Σ) ⊂ Σ′ ∪ {ε}. So they are uniquely
defined by corresponding mappings h : Σ −→ Σ′ ∪ {ε}. In the following we denote
both the mapping h and the homomorphism h∗ by h. In this paper we consider
a lot of alphabetic language homomorphisms. So for simplicity we tacitly assume
that a mapping between free monoids is an alphabetic language homomorphism if
nothing contrary is stated.

To describe a two-sided cooperation, let Σ = Φ ·∪ Γ where Φ is the set of actions
of cooperation partner F and Γ is the set of actions of cooperation partner G. Now
a prefix closed language L ⊂ (Φ ·∪ Γ)∗ formally defines a two-sided cooperation.

For parameter sets I, K and (i, k) ∈ I×K let Σik denote pairwise disjoint copies
of Σ. The elements of Σik are denoted by aik and ΣIK :=

⋃̇
(i,k)∈I×K

Σik. The index

ik describes the bijection a ↔ aik for a ∈ Σ and aik ∈ Σik. Now LIK ⊂ Σ∗IK
(prefix-closed) describes a parameterised cooperation. To avoid pathological cases
we generally assume parameter and index sets to be non empty.

For (i, k) ∈ I ×K let

πIKik : Σ∗IK → Σ∗ with πIKik (ars) =
{
a | ars ∈ Σik
ε | ars ∈ ΣIK \ Σik

For uniformly parameterised systems LIK we generally want to have
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 5

LIK ⊂
⋂

(i,k)∈I×K

((πIKik )−1(L)).

In addition to this inclusion LIK is defined by local schedules that determine
how each “version of a partner” can participate in “different cooperations”. More
precisely, let SF ⊂ Φ∗, SG ⊂ Γ∗ be prefix closed. For (i, k) ∈ I ×K, let

ϕIKi : Σ∗IK → Φ∗ with ϕIKi (ars) =
{
a | ars ∈ Φ{i}K
ε | ars ∈ ΣIK \ Φ{i}K

and

γIKk : Σ∗IK → Γ∗ with γIKk (ars) =
{
a | ars ∈ ΓI{k}
ε | ars ∈ ΣIK \ ΓI{k}

,

where ΦIK and ΓIK are defined correspondingly to ΣIK .

Definition 1. Let I, K be finite parameter sets, then

LIK =
⋂

(i,k)∈I×K

(πIKik )−1(L) ∩
⋂
i∈I

(ϕIKi )−1(SF ) ∩
⋂
k∈K

(γIKk )−1(SG)

denotes a uniformly parameterised cooperation.

By this definition

L{1}{1} = (π{1}{1}11 )−1(L) ∩ (ϕ{1}{1}1 )−1(SF ) ∩ (γ{1}{1}1 )−1(SG).

As we want L{1}{1} beeing isomorphic to L by the isomorphism
π
{1}{1}
11 : Σ∗{1}{1} → Σ∗ we additionally need (π{1}{1}11 )−1(L) ⊂ (ϕ{1}{1}1 )−1(SF )

and (π{1}{1}11 )−1(L) ⊂ (γ{1}{1}1 )−1(SG). This is equivalent to πΦ(L) ⊂ SF and
πΓ(L) ⊂ SG, where πΦ : Σ∗ → Φ∗ and πΓ : Σ∗ → Γ∗ are defined by

πΦ(a) =
{
a | a ∈ Φ
ε | a ∈ Γ and πΓ(a) =

{
a | a ∈ Γ
ε | a ∈ Φ .

So we complete definition 1 by the additional conditions πΦ(L) ⊂ SF and πΓ(L) ⊂
SG. Now we consider special abstractions on LIK .

Definition 2. For I ′ ⊂ I and K ′ ⊂ K let

ΠIK
I′K′ : Σ∗IK → Σ∗I′K′ with ΠIK

I′K′(ars) =
{
ars | ars ∈ ΣI′K′
ε | ars ∈ ΣIK \ ΣI′K′

Lemma 1. For I ′ ⊂ I, K ′ ⊂ K, and, L ⊂ Σ∗, SF ⊂ Φ∗, SG ∈ Γ∗ prefix closed
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



6 · P. Ochsenschläger and R. Rieke

and non-empty, the following relationships hold:

(ϕIKi )−1(ε) ⊃ Σ∗I′K for i ∈ I \ I ′, (1a)

(γIKk )−1(ε) ⊃ Σ∗IK′ for k ∈ K \K ′, (1b)⋂
(i,k)∈(I×K)\(I′×K′)

[(πIKik )−1(ε)] = Σ∗I′K′ , (1c)

ΠIK
I′K′ [(π

IK
ik )−1(L)] = (πI

′K′

ik )−1(L) for (i, k) ∈ I ×K, (1d)

ΠIK
I′K′ [(ϕ

IK
i )−1(SF )] = Σ∗I′K′ for i ∈ I \ I ′, (1e)

ΠIK
I′K′ [(γ

IK
k )−1(SG)] = Σ∗I′K′ for k ∈ K \K ′, (1f)

ΠIK
I′K′ [(π

IK
ik )−1(L)] = Σ∗I′K′ for (i, k) ∈ (I ×K) \ (I ′ ×K ′). (1g)

Proof.

(1a) ϕIKi (x) = ε for each x ∈ Σ∗I′K and i ∈ I \ I ′, which implies (1a).

(1b) Follows analogously.

(1c) For x ∈ Σ∗IK , x ∈ Σ∗I′K′ holds iff πIKik (x) = ε for each (i, k) = (I×K)\(I ′×K ′),
which implies (1c).

(1d) x ∈ Σ∗I′K′ and πI
′K′

ik (x) ∈ L, for x ∈ (πI
′K′

ik )−1(L). From this it follows
that x ∈ Σ∗IK , πIKik (x) = πI

′K′

ik (x) ∈ L and x = ΠIK
I′K′(x), which implies

x ∈ ΠIK
I′K′ [(π

IK
ik )−1(L)]. Hence (πI

′K′

ik )−1(L) ⊂ ΠIK
I′K′ [(π

IK
ik )−1(L)]. For x ∈

ΠIK
I′K′ [(π

IK
ik )−1(L)] exists y ∈ Σ∗IK such that πIKik (y) ∈ L and x = ΠIK

I′K′(y).
Since (i, k) ∈ I ′ ×K ′ it follows that πIKik (y) = πI

′K′

ik (ΠIK
I′K′(y)) = πI

′K′

ik (x) ∈ L
which proves the inclusion ΠIK

I′K′ [(π
IK
ik )−1(L)] ⊂ (πI

′K′

ik )−1(L).

(1e) For x ∈ Σ∗I′K′ and i ∈ I \ I ′ holds x ∈ Σ∗IK , ϕIKi (x) = ε ∈ SF and x ∈
ΠIK
I′K′(x), and so x ∈ ΠIK

I′K′ [(ϕ
IK
i )−1(SF )]. Hence Σ∗I′K′ ⊂ ΠIK

I′K′ [(ϕ
IK
i )−1(SF )].

The reverse inclusion holds because of ΠIK
I′K′ : Σ∗IK → Σ∗I′K′ .

(1f) and (1g) The proofs are analogous to the proof for (1e).

Theorem 1.
LIK ⊃ LI′K′ for I ′ ×K ′ ⊂ I ×K, and therefore
ΠIK
I′K′(LIK) ⊃ ΠIK

I′K′(LI′K′) = LI′K′

Proof.
Because of (1a)-(1c)
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 7

LIK =
⋂

(i,k)∈I×K

[(πIKik )−1(L) ∩ (ϕIKi )−1(SF ) ∩ (γIKk )−1(SG)]

=
⋂

(i,k)∈I′×K′
[(πIKik )−1(L) ∩ (ϕIKi )−1(SF ) ∩ (γIKk )−1(SG)]∩

∩
⋂

(i,k)∈(I×K)\(I′×K′)

(πIKik )−1(L) ∩
⋂

i∈I\I′
(ϕIKi )−1(SF ))∩

∩
⋂

k∈K\K′
(γIKk )−1(SG)

⊃
⋂

(i,k)∈I′×K′
[(πIKik )−1(L) ∩ (ϕIKi )−1(SF ) ∩ (γIKk )−1(SG)]∩

∩
⋂

(i,k)∈(I×K)\(I′×K′)

(πIKik )−1(ε) ∩
⋂

i∈I\I′
(ϕIKi )−1(ε)) ∩

⋂
k∈K\K′

(γIKk )−1(ε)

⊃
⋂

(i,k)∈I′×K′
[(πIKik )−1(L) ∩ (ϕIKi )−1(SF ) ∩ (γIKk )−1(SG)] ∩ Σ∗I′K′

=
⋂

(i,k)∈I′×K′
[(πI

′K′

ik )−1(L) ∩ (ϕI
′K′

i )−1(SF ) ∩ (γI
′K′

k )−1(SG)] = LI′K′

Examples show that the reverse inclusions

ΠIK
I′K′(LIK) ⊂ LI′K′ for all I ′ ×K ′ ⊂ I ×K (2)

do not hold in general.
In the general case we don’t know the decidability status of (2). But for many

parameterised systems (2), and therefore ΠIK
I′K′(LIK) = LI′K′ , which is a gener-

alisation of πIKik (LIK) = L, is a desirable property, because it describes a kind of
self-similarity: From an abstracting point of view, where only the actions of ΣI′K′
are considered, the complex system LIK behaves like the smaller subsystem LI′K′ .
So we are looking for conditions, which imply (2). For this, some preliminary
considerations are needed.

In general for a mapping f : X → Y and a family (At)t∈T of sets with At ⊂ X
for each t ∈ T :

f(
⋂
t∈T

At) ⊂
⋂
t∈T

f(At) (3)

The definition of LIK can be transformed
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



8 · P. Ochsenschläger and R. Rieke

LIK =
⋂

(i,k)∈I×K

(πIKik )−1(L) ∩
⋂
i∈I

(ϕIKi )−1(SF ) ∩
⋂
k∈K

(γIKk )−1(SG)

=
⋂

(i,k)∈I′×K′
(πIKik )−1(L) ∩

⋂
i∈I′

(ϕIKi )−1(SF ) ∩
⋂
k∈K′

(γIKk )−1(SG) ∩

⋂
(i,k)∈(I×K)\(I′×K′)

(πIKik )−1(L) ∩
⋂

i∈I\I′
(ϕIKi )−1(SF ) ∩

⋂
k∈K\K′

(γIKk )−1(SG)

=
⋂

(i,k)∈I′×K′
(πIKik )−1(L) ∩

⋂
i∈I′

[[
⋂
s∈K

(πIKis )−1(L)] ∩ (ϕIKi )−1(SF )] ∩

⋂
k∈K′

[[
⋂
r∈I

(πIKrk )−1(L)] ∩ (γIKk )−1(SG)] ∩⋂
(i,k)∈(I×K)\(I′×K′)

(πIKik )−1(L) ∩
⋂

i∈I\I′
(ϕIKi )−1(SF ) ∩

⋂
k∈K\K′

(γIKk )−1(SG)

With (3) and (1d)-(1g) from this it follows that

ΠIK
I′K′(LIK) ⊂

⋂
(i,k)∈I′×K′

(πI
′K′

ik )−1(L) ∩

⋂
i∈I′

ΠIK
I′K′ [[

⋂
s∈K

(πIKis )−1(L)] ∩ (ϕIKi )−1(SF )] ∩⋂
k∈K′

ΠIK
I′K′ [[

⋂
r∈I

(πIKrk )−1(L)] ∩ (γIKk )−1(SG)] ∩ Σ∗I′K′ .

Therefore, to prove (2), it is sufficient to show

ΠIK
I′K′ [[

⋂
s∈K

(πIKis )−1(L)] ∩ (ϕIKi )−1(SF )] ⊂ (ϕI
′K′

i )−1(SF ) (4)

for I ′ ⊂ I, K ′ ⊂ K, all i ∈ I ′, and to show corresponding inclusions with respect
to γIKk , γI

′K′

k and SG for all k ∈ K ′.
For (r, s) ∈ I ×K let

ϕIKrs : Σ∗IK → Φ∗ with ϕIKrs (aik) :=
{
a | aik ∈ ΣIK , (r, s) = (i, k) and a ∈ Φ
ε | aik ∈ ΣIK , (r, s) 6= (i, k) or a /∈ Φ

Hence ϕIKrs = πΦ ◦ πIKrs .
Because of L ⊂ π−1

Φ (πΦ(L)) and the precondition πΦ(L) ⊂ SF it follows that
(πIKrs )−1(L) ⊂ (πIKrs )−1[π−1

Φ (πΦ(L))] = (ϕIKrs )−1(πΦ(L)) ⊂ (ϕIKrs )−1(SF ).
Therefore it is sufficient for the proof of (4) to show

ΠIK
I′K′ [[

⋂
s∈K

(ϕIKis )−1(SF )] ∩ (ϕIKi )−1(SF )] ⊂ (ϕI
′K′

i )−1(SF ). (5)

Let

πIKΦ : Σ∗IK → Φ∗IK with πIKΦ (aik) :=
{
aik | aik ∈ ΦIK
ε | aik ∈ ΓIK .

Let

ϕ̄IKi : Φ∗IK → Φ∗ with ϕ̄IKi (x) := ϕIKi (x)
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 9

and

ϕ̄IKik : Φ∗IK → Φ∗ with ϕ̄IKik (x) := ϕIKik (x)

for each x ∈ Φ∗IK and (i, k) ∈ I ×K.
So

ϕIKi = ϕ̄IKi ◦ πIKΦ and ϕIKik = ϕ̄IKik ◦ πIKΦ for (i, k) ∈ I ×K, (6)

as well as

ΠIK
I′K′((π

IK
Φ )−1(y)) = (πI

′K′

Φ )−1(ΠIK
I′K′(y)) for each y ∈ Φ∗IK , (7)

where πI
′K′

Φ : Σ∗I′K′ → Φ∗I′K′ is defined corresponding to πIKΦ .
(7) is a special case of Lemma 2, which will be proven below.
Because of (6) and (7) now we have

ΠIK
I′K′ [[

⋂
s∈K

(ϕIKis )−1(SF )] ∩ (ϕIKi )−1(SF )] =

= ΠIK
I′K′ [(π

IK
Φ )−1[[

⋂
s∈K

(ϕ̄IKis )−1(SF )] ∩ (ϕ̄IKi )−1(SF )]] =

= (πI
′K′

Φ )−1[ΠIK
I′K′ [[

⋂
s∈K

(ϕ̄IKis )−1(SF )] ∩ (ϕ̄IKi )−1(SF )]],

and (ϕI
′K′

i )−1(SF ) = (πI
′K′

Φ )−1[(ϕ̄I
′K′

i )−1(SF )].
For the proof of (5) it is therefore sufficient to show

ΠIK
I′K′ [[

⋂
s∈K

(ϕ̄IKis )−1(SF )] ∩ (ϕ̄IKi )−1(SF )] ⊂ (ϕ̄I
′K′

i )−1(SF ). (8)

For index sets S and T and S′ × T ′ ⊂ S × T let

ϕ̂STS′T ′ : Φ∗ST → Φ∗S′T ′ with ϕ̂STS′T ′(x) := ΠST
S′T ′(x) for x ∈ Φ∗ST ⊂ Σ∗ST .

With this (8) is equivalent to

ϕ̂IKI′K′ [[
⋂
s∈K

(ϕ̄IKis )−1(SF )] ∩ (ϕ̄IKi )−1(SF )] ⊂ (ϕ̄I
′K′

i )−1(SF ). (9)

From the definitions it follows that

ϕ̄IKik = ϕ̄
{i}K
ik ◦ ϕ̂IK{i}K and ϕ̄IKi = ϕ̄

{i}K
i ◦ ϕ̂IK{i}K for (i, k) ∈ I ×K. (10)

For I ′ ×K ′ ⊂ I ×K and i ∈ I ′ holds

ϕ̂IKI′K′((ϕ̂
IK
{i}K)−1(y)) = (ϕ̂I

′K
{i}K′)

−1(ϕ̂IKI′K′(y)) for y ∈ Φ∗{i}K . (11)

(11) is a special case of Lemma 2, which will be proven below.
Because of (10) and (11) it holds

ϕ̂IKI′K′ [[
⋂
s∈K

(ϕ̄IKis )−1(SF )] ∩ (ϕ̄IKi )−1(SF )] =

= (ϕ̂I
′K′

{i}K′)
−1[ϕ̂IKI′K′ [[

⋂
s∈K

(ϕ̄{i}Kis )−1(SF )] ∩ (ϕ̄{i}Ki )−1(SF )] and

(ϕ̄I
′K′

i )−1(SF ) = (ϕ̂I
′K′

{i}K′)
−1[(ϕ̄{i}Ki )−1(SF )] for i ∈ I ′.

So for the proof of (9) it is sufficient to show

ϕ̂IKI′K′ [[
⋂
s∈K

(ϕ̄{i}Kis )−1(SF )] ∩ (ϕ̄{i}Ki )−1(SF )] ⊂ (ϕ̄{i}K
′

i )−1(SF ) (12)

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



10 · P. Ochsenschläger and R. Rieke

Since ϕ̂IKI′K′(x) = ϕ̂
{i}K
{i}K′(x) for x ∈ Φ∗{i}K and i ∈ I ′, (12) is equivalent to

ϕ̂
{i}K
{i}K′ [[

⋂
s∈K

(ϕ̄{i}Kis )−1(SF )] ∩ (ϕ̄{i}Ki )−1(SF )] ⊂ (ϕ̄{i}K
′

i )−1(SF ) (13)

(13) has to be proven for arbitray index sets K ′ ⊂ K and each i ∈ I ′ ⊂ I.
From the definitions of ϕ̂{i}K{i}K′ , ϕ̄

{i}K
is , ϕ̄{i}Ki , and ϕ̄{i}K

′

i it follows directly that for
each i ∈ I ′, (13) is the same inclusion

ϕ̂KK′ [[
⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩ (ϕ̄K)−1(SF )] ⊂ (ϕ̄K
′
)−1(SF ) (14)

up to isomorphism.
For definition of the homomorphisms occurring therein, let K be an arbitrary index
set, and for each s ∈ K let Φs be a copy of Φ. Let all Φs be pairwise disjoint. The
index s describes the bijection a↔ as for a ∈ Φ and as ∈ Φs, and ΦK :=

⋃̇
s∈K

Φs.

For K ′ ⊂ K, let ϕ̂KK′ : Φ∗K → Φ∗K′ with ϕ̂KK′(ar) :=
{
ar | ar ∈ ΦK′
ε | ar ∈ ΦK \ ΦK′

.

For s ∈ K, let ϕ̄Ks : Φ∗K → Φ∗ with ϕ̄Ks (ar) :=
{
a | ar ∈ Φs
ε | ar ∈ ΦK \ Φs

.

Let ϕ̄K : Φ∗K → Φ∗ with ϕ̄K(ar) := a for each r ∈ K and ar ∈ Φr.
Now, up to equations (7) and (11), we have shown the following

Theorem 2.
Let I ′×K ′ ⊂ I×K. Assuming (14) and a corresponding inclusion concerning SG,
then ΠIK

I′K′(LIK) = LI′K′ .

To prove (14) we have to show that

ϕ̂KK′(w) ∈ (ϕ̄K
′
)−1(SF ) for each w ∈ [

⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩ (ϕ̄K)−1(SF ). (15)

Equations (7) and (11) are special cases of a more general lemma.
For a set X and X ′ ⊂ X let

πXX′ : X∗ → X ′∗ with πXX′(a) :=
{
a | a ∈ X ′
ε | a ∈ X \X ′

Lemma 2 (projection-lemma).
Let X ′ ⊂ X, Y ⊂ X and Y ′ := X ′ ∩ Y , then

πXX′((π
X
Y )−1(y)) = (πX

′

Y ′ )
−1(πXX′(y)) for each y ∈ Y ∗ (16)

Proof. Let y ∈ Y ∗. We show

πX
′

Y ′ (π
X
X′(z)) = πXX′(y) for each z ∈ (πXY )−1(y) (17)

and we show that

for each u ∈ (πX
′

Y ′ )
−1(πXX′(y)) there exists a v ∈ (πXY )−1(y) such that πXX′(v) = u.

(18)
From (17) it follows that πXX′((π

X
Y )−1(y)) ⊂ (πX

′

Y ′ )
−1(πXX′(y)) and from (18) it

follows that (πX
′

Y ′ )
−1(πXX′(y)) ⊂ πXX′((πXY )−1(y)) which in turn proves (16).

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 11

Proof of (17):
By definition of πXY , πX

′

Y ′ and πXX′ follows πX
′

Y ′ (π
X
X′(z)) = πXX′(π

X
Y (z)) for each z ∈ X∗

and therewith (17).
Proof of (18) by induction on y ∈ Y ∗:
Induction base.
Let y = ε, then u ∈ (X ′ \ Y ′)∗ for each u ∈ (πX

′

Y ′ )
−1(πXX′(y)).

From this follows πXX′(v) = u with v := u ∈ (πXY )−1(ε).
Induction step. Let y = ẙŷ with ẙ ∈ Y ∗ and ŷ ∈ Y .
Case 1: ŷ ∈ Y \ Y ′ = Y ∩ (X \X ′)
Then (πX

′

Y ′ )
−1(πXX′(y)) = (πX

′

Y ′ )
−1(πXX′(ẙ)).

By induction hypothesis then for each u ∈ (πX
′

Y ′ )
−1(πXX′(y)) it exists v̊ ∈ (πXY )−1(ẙ)

such that πXX′ (̊v) = u.
With v := v̊ŷ holds πXY (̊vŷ) = ẙŷ = y and hence v ∈ (πXY )−1(y) and πXX′(v) =
πXX′ (̊v) = u.
Case 2: ŷ ∈ Y ′ ⊂ X ′
Then πXX′(y) = πXX′(ẙ)ŷ. Therefore each u ∈ (πX

′

Y ′ )
−1(πXX′(y)) can be departed into

u = ůŷû with ů ∈ (πX
′

Y ′ )
−1(πXX′(ẙ)) and û ∈ (X ′ \ Y ′)∗. By induction hypothesis

then exists v̊ ∈ (πXY )−1(ẙ) such that πXX′ (̊v) = ů.
With v := v̊ŷû holds πXY (̊vŷû) = ẙŷ = y and hence v ∈ (πXY )−1(y) and πXX′(v) =
πXX′ (̊v)ŷû = ůŷû = u.
This completes the proof of (18).

Remark. (7) follows from (16) by X = ΣIK , X ′ = ΣI′K′ and Y = ΦIK . (11)
follows from (16) by X = ΦIK , X ′ = ΦI′K′ and Y = Φ{i}K .

3. SCHEDULES BASED ON PHASES

By definitions of ϕ̄Ks and ϕ̄K it holds

ϕ̄K(w) ∈ SF� for each w ∈ [
⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩ (ϕ̄K)−1(SF ),

where SF� denotes the iterated shuffle product of SF .

Definition 3.

P� := ΘN[
⋂
t∈N

(τNt )−1(P ∪ {ε})] for P ⊂ Σ∗.

For the definition of the homomorphisms ΘN and τNt , let t ∈ N, and for each t
let Σt be a copy of Σ. Let all Σt be pairwise disjoint. The index t describes the
bijection a↔ at for a ∈ Σ and at ∈ Σt.

Let ΣN :=
⋃̇
t∈N

Σt, and for each t ∈ N let the homomorphisms τNt and ΘN be

defined by

τNt : Σ∗N → Σ∗ with τNt (as) =
{
a | as ∈ Σt
ε | as ∈ ΣN \ Σt

and ΘN : Σ∗N → Σ∗ with ΘN(at) := a for at ∈ Σt and t ∈ N.

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



12 · P. Ochsenschläger and R. Rieke

If we similarly define τKk : Σ∗K → Σ∗ for k ∈ K and ΘK : Σ∗K → Σ∗ for arbitrary
index sets K, then we have ϕ̄Kk = τKk and ϕ̄K = ΘK for Φ = Σ.

Definition 3 looks different to the usual one of iterated shuffle products, as for
example in [Jantzen 1985]. But it is easy to see that they are equivalent. We use
our kind of definition, as it is more adequate to the considerations in this paper.

Directly from the definition it follows that pre(P�) = (pre(P ))� and P̃� ⊂ P�
for P̃ ⊂ P . A detailed analysis of the structure of iterated shuffle products will
pave the way for a sufficient condition for (14). For that, additional definitions and
lemmata are required.

Definition 4.
SF ⊂ Φ∗ is based on a phase PF ⊂ Φ∗, iff SF = pre(PF� ∩ SF ).

If SF is based on PF , then SF ⊂ pre(PF�) = (pre(PF ))� and
SF = pre(PF ))� ∩ SF .
Furthermore, it follows that SF� ⊂ ((pre(PF ))�)�.

For the subsequent considerations let S and T be arbitrary index sets and M ⊂
Σ∗. For each S′ ⊂ S and T ′ ⊂ T let

ΘS′×T ′
S′ : Σ∗S′×T ′ → Σ∗S′ with ΘS′×T ′

S′ (a(s,t)) := as for each a(s,t) ∈ ΣS′×T ′ and

ΘS′×T ′
T ′ : Σ∗S′×T ′ → Σ∗T ′ with ΘS′×T ′

T ′ (a(s,t)) := at for each a(s,t) ∈ ΣS′×T ′ .

Lemma 3 (Shuffle-lemma 1).
Let S, T arbitrary index sets and M ⊂ Σ∗, then⋂

s∈S
(τSs )−1[ΘT (

⋂
t∈T

(τTt )−1(M))] = ΘS×T
S [

⋂
(s,t)∈S×T

(τS×T(s,t) )−1(M)], (19a)

and, since ΘS×T = ΘS ◦ΘS×T
S ,

ΘS [
⋂
s∈S

(τSs )−1[ΘT (
⋂
t∈T

(τTt )−1(M))]] = ΘS×T [
⋂

(s,t)∈S×T

(τS×T(s,t) )−1(M)]. (19b)

Proof. For x ∈ Σ∗S let
Ux := {(ys)s∈S ∈ [

⋂
t∈T

(τTt )−1(M)]S | τSs (x) = ΘT (ys) for each s ∈ S} and

Vx := {z ∈
⋂

(s,t)∈S×T
(τS×T(s,t) )−1(M) | ΘS×T

S (z) = x}.

Then x ∈
⋂
s∈S

(τSs )−1[ΘT (
⋂
t∈T

(τTt )−1(M))]⇔ Ux 6= ∅ and

x ∈ ΘS×T
S [

⋂
(s,t)∈S×T

(τS×T(s,t) )−1(M)]⇔ Vx 6= ∅.

Hence
⋂
s∈S

(τSs )−1[ΘT (
⋂
t∈T

(τTt )−1(M))] = ΘS×T
S [

⋂
(s,t)∈S×T

(τS×T(s,t) )−1(M)]

iff Ux 6= ∅ ⇔ Vx 6= ∅ for each x ∈ Σ∗S .
These equivalences hold, if for each x ∈ Σ∗S a surjective mapping κx : Vx → Ux

exists.
For x ∈ Σ∗S and z ∈

⋂
(s,t)∈S×T

(τS×T(s,t) )−1(M) let therefore κx(z) := (ys)s∈S with

ys = Θ{s}×TT (ΠST
{s}T (z)).

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 13

From this it follows that τTt (ys) = τTt (Θ{s}×TT (ΠST
{s}T (z))) = τS×T(s,t) (z) ∈M for each

(s, t) ∈ S × T , thus ys ∈
⋂
t∈T

(τTt )−1(M) for each s ∈ S.

If x = ΘS×T
S (z), then τSs (x) = Θ{s}×T (ΠST

{s}T (z)) = ΘT (Θ{s}×TT (ΠST
{s}T (z))) =

ΘT (ys) for each s ∈ S and hence (ys)s∈S ∈ Ux.
Therefore, κx defines a mapping κx : Vx → Ux.
κx is surjective:
For each s ∈ S and ys ∈

⋂
t∈T

(τTt )−1(M) exists an y′s ∈
⋂
t∈T

(τ{s}×T(s,t) )−1(M) such

that ys = Θ{s}×TT (y′s). If additionally τSs (x) = ΘT (ys) = ΘT (Θ{s}×TT (y′s)) =
Θ{s}×T (y′s) for each s ∈ S, then there exists z ∈

⋂
(s,t)∈S×T

(τS×T(s,t) )−1(M) with

y′s = ΠST
{s}T (z) and ΘS×T

S (z) = x. For this z now κx(z) = (Θ{s}×TT (ΠST
{s}T (z)))s∈S =

(Θ{s}×TT (y′s))s∈S = (ys)s∈S and hence κx is surjective.

Definition 5. Let S be an arbitrary index set. For each x ∈ ΘS [
⋂
s∈S

(τSs )−1(M)]

there exists u ∈
⋂
s∈S

(τSs )−1(M) such that x = ΘS(u). We call u a structured rep-

resentation of x w.r.t. S. For x ∈ Σ∗ let SRSM (x) := (ΘS)−1(x) ∩ [
⋂
s∈S

(τSs )−1(M)].

It is the set of all structured representations of x w.r.t. S and fixed M ⊂ Σ∗.

Now x ∈ P� iff there exists a countable index set S with SRS(P∪{ε})(x) 6= ∅
(see Lemma 4). If x ∈ P�, then generally SRS(P∪{ε})(x) contains more than one
element.

If ι : S → T is a bijection, then it defines an isomorphism νι : Σ∗S → Σ∗T with
νι(as) = aι(s) for each s ∈ S. For this isomorphism holds
νι(SRSM (x)) = νι[(ΘS)−1(x)]∩νι[

⋂
s∈S

(τSs )−1(M)] = (ΘT )−1(x)∩[
⋂
s∈S

νι((τSs )−1(M))].

Since τTι(s) ◦ νι = τSs , it follows that
νι(SRSM (x)) = (ΘT )−1(x) ∩ [

⋂
s∈S

(τTι(s))
−1(M)] = (ΘT )−1(x) ∩ [

⋂
t∈T

(τTt )−1(M)] =

SRTM (x). In summary we have

Lemma 4 (Shuffle-lemma 2).
If a bijection between S and T exists, then ΘS [

⋂
s∈S

(τSs )−1(M)] = ΘT [
⋂
t∈T

(τTt )−1(M)]

for M ⊂ Σ∗.

For an arbitrary index set S and S′ ⊂ S let

ΠS
S′ : Σ∗S → Σ∗S′ with ΠS

S′(as) =
{
as | as ∈ ΣS′
ε | as ∈ ΣS \ ΣS′

.

Lemma 5 (Shuffle-lemma 3).
Let M ⊂ Σ∗, S, T index sets and y ∈ Σ∗S×T with τS×T(s,t) (y) ∈ M for each (s, t) ∈
S × T and x = ΘS×T

S (y) ∈ Σ∗S, then ΠS×T
S′×T (y) ∈ SRS

′×T
M (ΘS′(ΠS

S′(x))) for each
S′ ⊂ S.

Remark. The hypotheses of this lemma are given by (19a).
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



14 · P. Ochsenschläger and R. Rieke

Proof. It holds ΠS×T
S′×T (y) ∈ Σ∗S′×T .

For a(s,t) ∈ ΣS×T \ ΣS′×T holds ΘS′×T (ΠS×T
S′×T (a(s,t))) = ε and

ΘS′(ΠS
S′(Θ

S×T
S (a(s,t)))) = ΘS′(ΠS

S′(as)) = ε.
For a(s,t) ∈ ΣS′×T holds ΘS′×T (ΠS×T

S′×T (a(s,t))) = ΘS′×T (a(s,t)) = a and
ΘS′(ΠS

S′(Θ
S×T
S (a(s,t)))) = ΘS′(ΠS

S′(as)) = a.
This implies ΘS′×T (ΠS×T

S′×T (y)) = ΘS′(ΠS
S′(x)).

For (s, t) ∈ S′ × T holds τS
′×T

(s,t) (ΠS×T
S′×T (y)) = τS×T(s,t) (y) ∈M . This proves Lemma 5.

We will now apply the three shuffle lemmata to the expressions of (14) and (15).
To do this, the terminology has to be adapted. With the substitution Φ = Σ, it
holds ϕ̂KK′ = ΠK

K′ , ϕ̄
K
k = τKk and ϕ̄K = ΘK .

If SF is based on PF , then SF ⊂ (pre(PF ))�, thus by Lemma 3⋂
s∈K

(ϕ̄Ks )−1(SF ) =
⋂
s∈K

(τKs )−1(SF ) ⊂
⋂
s∈K

(τKs )−1[(pre(PF ))�]

=
⋂
s∈K

(τKs )−1[ΘN(
⋂
t∈N

(τNt )−1(pre(PF )))]

= ΘK×N
K [

⋂
(s,t)∈(K×N)

(τK×N(s,t) )−1(pre(PF ))].

For w ∈
⋂
s∈K

(ϕ̄Ks )−1(SF ) this implies w = ΘK×N
K (y), and

ϕ̄K(w) = ΘK(ΘK×N
K (y)) = ΘK×N(y) for an y ∈

⋂
(s,t)∈(K×N)

(τK×N(s,t) )−1(pre(PF )).

Hence

y ∈ SRK×Npre(PF )(ϕ̄
K(w)). (20)

According to Lemma 5 for K ′ ⊂ K now:

ΠK×N
K′×N(y) ∈ SRK

′×N
pre(PF )(Θ

K′(ΠK
K′(Θ

K×N
K (y)))) = SRK

′×N
pre(PF )(ϕ̄

K′(ϕ̂KK′(w))). (21)

Generally for u ∈ SF an y ∈ SRK×Npre(PF )(u) describes “how the cooperation
partner F is involved in several phases”.
Unfortunately this is ambiguous if SRK×Npre(PF )(u) contains more than one element.

If K ′ 6= ∅ and K is finite, then K×N and K ′×N are countable, thus isomorphic
to N.
From the existence of y ∈ SRK×Npre(PF )(ϕ̄

K(w)) and likewise of

ΠK×N
K′×N(y) ∈ SRK

′×N
pre(PF )(ϕ̄

K′(ϕ̂KK′(w)), it follows by Lemma 4 that

ϕ̄K(w) ∈ (pre(PF ))� as well as ϕ̄K
′
(ϕ̂KK′(w)) ∈ (pre(PF ))�.

Later we will use these considerations for a sufficient condition for (14).
The idea of such a condition is the following: For a cooperation partner the

“possibilities of acting in a phase” depend on a “kind of resources”. So the “more
phases a partner is involved in”, the less possibilities of acting in each phase he has.

To formalise this intuition we need an unambiguous description of “how a coop-
eration partner is involved in several phases”. This will be done by an automaton
representation of the iterated shuffle product.
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 15

4. SHUFFLE AUTOMATA

Let P ⊂ Σ∗ and A = (Σ, Q,∆, q0, F ) with ∆ ⊂ Q × Σ × Q, q0 ∈ Q and F ⊂ Q
be an (not necessarily finite) automaton that accepts P . To exclude pathological
cases we assume ε /∈ P 6= ∅. A consequence of this is in particular that q0 /∈ F .

For the construction of A� the set NQ0 (set of all functions from Q in N0) plays
a central role. In NQ0 we distinguish the following functions:
0 ∈ NQ0 with 0(x) = 0 for each x ∈ Q, and for q ∈ Q the function 1q ∈ NQ0 with

1q(x) =
{

1 | x = q
0 | x ∈ Q \ {q} .

As usual for numerical functions, a partial order as well as addition and partial
subtraction are defined:

For f, g ∈ NQ0 let

– f > g iff f(x) > g(x) for each x ∈ Q,
– f + g ∈ NQ0 with (f + g)(x) := f(x) + g(x) for each x ∈ Q, and

– for f > g, f − g ∈ NQ0 with (f − g)(x) := f(x)− g(x) for each x ∈ Q.

The key idea of A� is, to record in the functions of NQ0 how many “open phases”
are in each state q ∈ Q respectively. Its state transition relation ∆� is composed
of four subsets whose elements describe

– the “entry into a new phase”,
– the “transition within an open phase”,
– the “completion of an open phase”,
– the “entry into a new phase with simultaneous completion of this phase”.

With these definitions we now define the shuffle automaton A� as follows:

Definition 6 (shuffle automaton).
The shuffle automaton A� = (Σ,NQ0 ,∆

�, 0, {0}) w.r.t. A is an automaton with
infinite state set NQ0 and

∆� :={(f, a, f + 1p) ∈ NQ0 × Σ×NQ0 | (q0, a, p) ∈ ∆ and it exists (p, x, y) ∈ ∆} ∪

∪ {(f, a, f + 1p − 1q) ∈ NQ0 × Σ×NQ0 | f > 1q, (q, a, p) ∈ ∆ and it exists
(p, x, y) ∈ ∆} ∪

∪ {(f, a, f − 1q) ∈ NQ0 × Σ×NQ0 | f > 1q, (q, a, p) ∈ ∆ and p ∈ F} ∪

∪ {(f, a, f) ∈ NQ0 × Σ×NQ0 | (q0, a, p) ∈ ∆ and p ∈ F}.

Generally A� is a non-deterministic automaton. In the literature such automata
are called multicounter automata [Björklund and Bojanczyk 2007] and it is known
that they accept the iterated shuffle products [Jedrzejowicz 1999]. For our purposes
deterministic computations of these automata are very important. To analyse these
aspects more deeply we use our own notation and proof of the main theorems.

To prove the following theorem for simplicity we assume that A is deterministic.
I.e., the state transition relation ∆ can be described by a partial function δ :

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



16 · P. Ochsenschläger and R. Rieke

Q × Σ → Q which is extended to a partial function δ : Q × Σ∗ → Q as usual
[Sakarovitch 2009]. Additionally we assume that A does not contain superfluous
states, i.e. δ(q0,pre(P )) = Q. So ∆� can be represented by

∆� =∆̃ ∪ ∆̊ ∪ ∆̄ ∪ ˜̄∆ with

∆̃ ={(f, a, f + 1p) ∈ NQ0 × Σ×NQ0 | δ(q0, a) = p and it exists b ∈ Σ such that
δ(p, b) is defined},

∆̊ ={(f, a, f + 1p − 1q) ∈ NQ0 × Σ×NQ0 | f > 1q, δ(q, a) = p and it exists b ∈ Σ
such that δ(p, b) is defined},

∆̄ ={(f, a, f − 1p) ∈ NQ0 × Σ×NQ0 | f > 1q and δ(q, a) ∈ F} and
˜̄∆ ={(f, a, f) ∈ NQ0 × Σ×NQ0 | δ(q0, a) ∈ F}.

Let A ⊂ (∆�)∗ be the set of all paths in A� starting with the initial state 0 and
including the empty path ε. For w ∈ A, Z(w) denotes the final state of the path and
Z(ε) := 0. Formally the prefix closed language A and the function Z : A → N

Q
0

is defined inductively by ε ∈ A, Z(ε) := 0, and if w ∈ A with Z(w) = f and
(f, a, g) ∈ ∆� then w(f, a, g) ∈ A and Z(w(f, a, g)) := g. Let α′ : (∆�)∗ → Σ∗

be the homomorphism with α′((f, a, g)) = a for (f, a, g) ∈ ∆�, and let α := α′|A.
Hence w ∈ A is an accepting path of a word u ∈ Σ∗ iff Z(w) = 0 and α(w) = u.
We denote the language accepted by A� with L(A�).

Theorem 3.

P� ⊂ L(A�) (22a)
L(A�) ⊂ P� (22b)

The automaton A� accepts the language P�.

Proof. Together with the alphabet Σ we now consider four pairwise disjoint alpha-
bets Σ̃, Σ̊, Σ̄, ˜̄Σ and a homomorphism ∧ : Σ̂∗ → Σ∗ with Σ̂ := Σ̃ ·∪ Σ̊ ·∪ Σ̄ ·∪ ˜̄Σ and
∧(ã) := ∧(̊a) := ∧(ā) := ∧(˜̄a) := a for each a ∈ Σ.

For words u ∈ P ⊂ Σ+ the four alphabets are used to characterise start-, inner-,
end-, or start-end letters of u. Let therefore P̂ := ∧−1(P ) ∩ [Σ̃Σ̊∗Σ̄ ·∪ ˜̄Σ] ⊂ Σ̂+.
Since ε /∈ P , ∧|P̂ : P̂ → P is a bijection.
According to the definitions of Σt, τNt and ΘN we now consider
Σ̂t := Σ̃t ·∪ Σ̊t ·∪ Σ̄t ·∪ ˜̄Σt for t ∈ N and τ̂Nt : Σ̂∗N → Σ̂∗ and Θ̂N : Σ̂∗N → Σ̂∗, with
Σ̂N :=

⋃
s∈N

Σ̂s. Therewith now

P� = ΘN(
⋂
t∈N

(τNt )−1(P ∪ {ε})) = ∧[Θ̂N(
⋂
t∈N

(τ̂Nt )−1(P̂ ∪ {ε}))] = ∧(P̂�).

We can now show two relations between pre[
⋂
t∈N

(τ̂Nt )−1(P̂∪{ε})] =
⋂
t∈N

(τ̂Nt )(pre(P̂ ))

and A that prove Theorem 3. We first show

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 17

Proposition 1. For each x ∈
⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) there exists y ∈ A such that

α(y) = ∧(Θ̂N(x)) and Z(y)(q) = #({t ∈ N | δ(q0,∧(τ̂Nt (x))) = q and τ̂Nt (x) /∈
P̂ ∪ {ε}}) for each q ∈ Q, where #(X) denotes the cardinality of the set X.

Taking into account that x ∈
⋂
t∈N

(τ̂Nt )−1(P̂ ∪ {ε}) iff x ∈
⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) and

τ̂Nt (x) ∈ P̂ ∪ {ε} for each t ∈ N then from Proposition 1 it directly follows that
P� ⊂ L(A�).

Proof of Proposition 1 by induction:
Induction base. With y = ε, Proposition 1 holds for x = ε.
Induction step.
Let x′ = xâs ∈ pre[

⋂
t∈N

(τ̂Nt )−1(P̂ ∪ {ε})] with âs ∈ Σ̂s.

Then also x ∈ pre[
⋂
t∈N

(τ̂Nt )−1(P̂ ∪ {ε})] and by induction hypothesis it exists an

y ∈ A such that α(y) = ∧(Θ̂N(x)) and Z(y)(q) = #({t ∈ N | δ(q0,∧(τ̂Nt (x))) = q
and τ̂Nt (x) /∈ P̂ ∪ {ε}}) for each q ∈ Q.
According to the union Σ̂ := Σ̃ ·∪ Σ̊ ·∪ Σ̄ ·∪ ˜̄Σ we now have to consider four cases:

Case 1: âs ∈ Σ̃s
Then δ(q0,∧(τ̂Ns (âs))) = p, it exists b ∈ Σ such that δ(p, b) is defined, τ̂Ns (âs) /∈
P̂ ∪ {ε} and τ̂Ns (x) = ε.
Because of the first two statements, we have (Z(y),∧(τ̂Ns (âs)), Z(y) + 1p) ∈ ∆̃,
which implies y′ = y(Z(y),∧(τ̂Ns (âs)), Z(y) + 1p) ∈ A and
α(y′) = α(y) ∧ (τ̂Ns (âs)) = ∧(Θ̂N(x)) ∧ (Θ̂N(âs)) = ∧(Θ̂N(x′)).
Since τ̂Ns (x) = ε, τ̂Ns (âs) /∈ P̂ ∪ {ε} and τ̂Nt (âs) = ε for t ∈ N \ {ε}, it holds:
#({t ∈ N | δ(q0,∧(τ̂Nt (xâs))) = q′ and τ̂Nt (xâs) /∈ P̂ ∪ {ε}}) =
= #({t ∈ N \ {s} | δ(q0,∧(τ̂Nt (xâs))) = q′ and τ̂Nt (xâs) /∈ P̂ ∪ {ε}}) + #({t ∈
{s} | δ(q0,∧(τ̂Nt (xâs))) = q′ and τ̂Nt (xâs) /∈ P̂ ∪ {ε}}) =
= #({t ∈ N \ {s} | δ(q0,∧(τ̂Nt (x))) = q′ and τ̂Nt (x) /∈ P̂ ∪ {ε}}) + #({t ∈
{s} | δ(q0,∧(τ̂Nt (â))) = q′}) =
= #({t ∈ N | δ(q0,∧(τ̂Nt (x))) = q′ and τ̂Nt (x) /∈ P̂ ∪{ε}})+1p(q′) = Z(y)(q′)+
1p(q′) for each q′ ∈ Q. This completes the induction step for case 1.

Case 2: âs ∈ Σ̊s
Then δ(q0,∧(τ̂Ns (x))) = q, δ(q,∧(τ̂Ns (âs))) = p, and it exists b ∈ Σ such that
δ(p, b) is defined, τ̂Ns (x) /∈ P̂ ∪ {ε} and τ̂Ns (âs) /∈ P̂ ∪ {ε}.
Because of the first three statements, Z(y) > 1q and (Z(y),∧(τ̂Ns (âs)), Z(y) +
1p − 1q) ∈ ∆̊. As in case 1 it follows y′ = y(Z(y),∧(τ̂Ns (âs)), Z(y) + 1p −
1q) ∈ A and α(y′) = α(y) ∧ (τ̂Ns (âs)) = ∧(Θ̂N(x)) ∧ (Θ̂N(âs)) = ∧(Θ̂N(x′)).
Since τ̂Ns (x) /∈ P̂ ∪ {ε} and τ̂Ns (âs) /∈ P̂ ∪ {ε} analogue to case 1 it holds
#({t ∈ N | δ(q0,∧(τ̂Nt (xâs))) = q′ and τ̂Nt (xâs) /∈ P̂ ∪ {ε}}) = #({t ∈
N | δ(q0,∧(τ̂Nt (x))) = q′ and τ̂Nt (x) /∈ P̂ ∪ {ε}}) − 1q(q′) + 1p(q′) for each
q′ ∈ Q. This completes the induction step for case 2.

Case 3: âs ∈ Σ̄s
Then δ(q0,∧(τ̂Ns (x))) = q, δ(q,∧(τ̂Ns (âs))) ∈ F , τ̂Ns (x) /∈ P̂ ∪{ε} and τ̂Ns (xâs) ∈
P̂ .
Because of the first two statements, Z(y) > 1q and (Z(y),∧(τ̂Ns (âs)), Z(y) −

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



18 · P. Ochsenschläger and R. Rieke

1q) ∈ ∆̄. As in case 1 it follows y′ = y(Z(y),∧(τ̂Ns (âs)), Z(y) − 1q) ∈ A and
α(y′) = α(y) ∧ (τ̂Ns (âs)) = ∧(Θ̂N(x)) ∧ (Θ̂N(âs)) = ∧(Θ̂N(x′)).
Since τ̂Ns (x) /∈ P̂ ∪ {ε} and τ̂Ns (xâs) ∈ P̂ analogue to case 2 it holds #({t ∈
N | δ(q0,∧(τ̂Nt (xâs))) = q′ and τ̂Nt (xâs) /∈ P̂ ∪{ε}}) = Z(y)(q′)− 1q(q′) + 0(q′)
for each q′ ∈ Q. This completes the induction step for case 3.

Case 4: âs ∈ ˜̄Σs
Then δ(q0,∧(τ̂Ns (âs))) ∈ F , τ̂Ns (x) = ε and τ̂Ns (âs) ∈ P̂ . Because of the first
statement, (Z(y),∧(τ̂Ns (âs)), Z(y)) ∈ ˜̄∆.
As in case 1 it follows y′ = y(Z(y),∧(τ̂Ns (âs)), Z(y)) ∈ A and α(y′) = α(y) ∧
(τ̂Ns (âs)) = ∧(Θ̂N(x)) ∧ (Θ̂N(âs)) = ∧(Θ̂N(x′)).
Since τ̂Ns (x) = ε and τ̂Ns (âs) ∈ P̂ analogue to case 1 and case 3 it holds #({t ∈
N | δ(q0,∧(τ̂Nt (xâs))) = q′ and τ̂Nt (xâs) /∈ P̂ ∪ {ε}}) = Z(y)(q′) + 0(q′) for
each q′ ∈ Q. This completes the induction step for case 4 and the proof of
Proposition 1.

For the proof of L(A�) ⊂ P� (22b) we now show

Proposition 2. For each y ∈ A exists x ∈
⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) such that α(y) =

∧(Θ̂N(x)) and Z(y)(q) = #({t ∈ N | δ(q0,∧(τ̂Nt (x))) = q and τ̂Nt (x) /∈ P̂ ∪ {ε}})
for each q ∈ Q.

As in Proposition 1 from Proposition 2 follows L(A�) ⊂ P� (22b).
Proof of Proposition 2 by induction:

Induction base. With x = ε, Proposition 2 holds for y = ε.
Induction step.
Let y′ = y(Z(y), a, g) ∈ A with (Z(y), a, g) ∈ ∆�. Then also y ∈ A and by induc-
tion hypothesis exists an x ∈

⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) such that α(y) = ∧(Θ̂N(x)) and

Z(y)(q) = #({t ∈ N | δ(q0,∧(τ̂Nt (x))) = q and τ̂Nt (x) /∈ P̂ ∪ {ε}}) for each q ∈ Q.

According to the (not necessarily disjoint) union ∆� = ∆̃ ∪ ∆̊ ∪ ∆̄ ∪ ˜̄∆ we have
to consider four cases:

Case 1: (Z(y), a, g) ∈ ∆̃
Then g = Z(y) + 1p with δ(q0, a) = p and it exists b ∈ Σ such that δ(p, b)
is defined and it exists s ∈ N such that τ̂Ns (x) = ε. Let now ãs ∈ Σ̃s with
∧(τ̂Ns (ãs)) = a. Then ã = τ̂Ns (ãs) ∈ pre(P̂ ) \ P̂ and hence x′ = xãs ∈⋂
t∈N

(τ̂Nt )−1(pre(P̂ )). The necessary properties of x′ for the induction step can

now be shown as in case 1 of Proposition 1.
Case 2: (Z(y), a, g) ∈ ∆̊

Then Z(y) > 1q, g = Z(y) + 1p − 1q, δ(q, a) = p and it exists b ∈ Σ such that
δ(p, b) is defined . Since Z(y) > 1q it exists s ∈ N such that δ(q0,∧(τ̂Ns (x))) = q

and τ̂Ns (x) /∈ P̂ ∪{ε}. Let ås ∈ Σ̊s with ∧(τ̂Ns (̊as)) = a. Since δ(q, a) = p and it
exists b ∈ Σ such that δ(p, b) is defined, it holds τ̂Ns (x̊as) ∈ pre(P̂ ) \ (P̂ ∪ {ε}).
Therewith x′ = x̊as ∈

⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) and as in case 2 of Proposition 1 the

necessary properties of x′ for the induction step can be shown.
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 19

Case 3: (Z(y), a, g) ∈ ∆̄
Then Z(y) > 1q, g = Z(y) − 1q and δ(q, a) ∈ F . Since Z(y) > 1q it exists
s ∈ N such that δ(q0,∧(τ̂Ns (x))) = q and τ̂Ns (x) /∈ P̂ ∪ {ε}. Let ās ∈ Σ̄s
with ∧(τ̂Ns (ās)) = a. δ(q, a) ∈ F implies τ̂Ns (xās) ∈ P̂ and hence x′ = xās ∈⋂
t∈N

(τ̂Nt )−1(pre(P̂ )). As in case 3 of Proposition 1 the necessary properties of

x′ for the induction step can now be shown.

Case 4: (Z(y), a, g) ∈ ˜̄∆
Then δ(q0, a) ∈ F . Let s ∈ N with τ̂Ns (x) = ε and ˜̄as ∈ ˜̄Σs with ∧(τ̂Ns (˜̄as)) = a.
δ(q0, a) ∈ F implies τ̂Ns (˜̄as) ∈ P̂ and hence x′ = x˜̄as ∈

⋂
t∈N

(τ̂Nt )−1(pre(P̂ )). As

in case 4 of Proposition 1 the necessary properties of x′ for the induction step
can now be shown, which completes the proof of Proposition 2.

From Propositions 1 and 2 follows L(A�) = P�. This completes the proof of
Theorem 3.

5. DETERMINISM IN SHUFFLE AUTOMATA

Related to the automaton A� we introduced another form of structured represen-
tations that we will now refer to as structured ∧-representations. For P ⊂ Σ+ is
was mentioned that ∧|P̂ : P̂ → P is a bijection.

Therefore P� = ΘN[
⋂
t∈N

(τNt )−1(P ∪ {ε})] = (∧ ◦ Θ̂N)[
⋂
t∈N

(τ̂Nt )−1(P̂ ∪ {ε})]

For x ∈ Σ∗ let ŜR
N

(P̂∪{ε})(x) := (∧ ◦ Θ̂N)−1(x) ∩ [
⋂
t∈N

(τ̂Nt )−1(P̂ ∪ {ε})]. It is the

set of all structured ∧-representations of x.
It is easy to see that the mapping ât 7→ at for t ∈ T defines a bijection from

ŜR
N

(P̂∪{ε})(x) onto SRN(P∪{ε})(x).

Regarding pre(ŜR
N

(P̂∪{ε})(x)) and pre(SRN(P∪{ε})(x)) the relation above defines
a mapping that is surjective but not necessarily injective.

Let e.g. P = {ab, abc}, then ã1b̄1 ∈ ŜR
N

(P̂∪{ε})(ab) ⊂ pre(ŜR
N

(P̂∪{ε})(ab)) and

ã1̊b1 ∈ pre(ŜR
N

(P̂∪{ε})(ab)) that are both mapped to a1b1 ∈ SRN(P∪{ε})(ab) ⊂
pre(SRN(P∪{ε})(ab)) by the mapping above.

In Theorem 3 a relation between the elements of pre(ŜR
N

(P̂∪{ε})(x)) and the paths

in A� was established. Let therefore ŜR
N

(P̂∪{ε}) :=
⋃

x∈P�
ŜR

N

(P̂∪{ε})(x).

Then ∧◦ Θ̂N : pre(ŜR
N

(P̂∪{ε}))→ (pre(P ))� is a surjective mapping. The construc-

tion in (22a) defines a mapping χ̂ : pre(ŜR
N

(P̂∪{ε}))→ A with α ◦ χ̂ = ∧ ◦ Θ̂N, and
so

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



20 · P. Ochsenschläger and R. Rieke

pre(ŜR
N

(P̂∪{ε})) A ⊂ (∧�)∗ (paths in A�)

(pre(P ))�

χ̂

∧ ◦ Θ̂N
◦

α

Definition 7. A� is called deterministic on w ∈ (pre(P ))�, iff #(α−1(x)) = 1 for
each x ∈ pre(w). In that case, we consider α−1(x) as an element of A instead of a
subset of A.

Theorem 3 provides a relation between the states of the shuffle automaton A�
and the structured ∧-representations. With an additional determinism condition
the following theorem provides an analog relation for structured representations.

Theorem 4. Let A� be deterministic on w ∈ (pre(P ))�, S a countable index set
and w′′ ∈ SRSpre(P )(w), then

Z[α−1(w)](q) = #({s ∈ S | δ(q0, τ
S
s (w′′)) = q and τSs (w′′) /∈ P ∪ {ε}})

for each q ∈ Q, (23a)

and

y /∈ P for each y ∈ pre(τSt (w′′)) \ {τSt (w′′)} ⊂ pre(P ) and t ∈ S. (23b)

Proof. (23a):
Since A� is deterministic on w, according to (22a)
Z[α−1(w)](q) = #{t ∈ N | δ(q0,∧(τ̂Nt (x′))) = q and τ̂Nt (x′) /∈ P̂ ∪ {ε}}) for each
q ∈ Q and each x′ ∈

⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) with w = ∧(Θ̂N(x′)).

We now extend the homomorphisms ∧ : Σ̂∗ → Σ∗ defined in the proof of Theo-
rem 3 to a homomorphisms ∧ : (Σ̂ ·∪ Σ̂N)∗ → (Σ ·∪ ΣN)∗ such that the mapping
âs → as for as ∈ Σs and s ∈ N is included.
So the restriction ∧|pre(ŜR

N

(P̂∪{ε}))
: pre(ŜR

N

(P̂∪{ε})) → pre(SRN(P∪{ε})) is the map-

ping introduced in the context of defining ŜR
N

(P̂∪{ε}) which is surjective but not
necessarily injective. With this definition we now have ∧(τ̂Nt (x′)) = τNt (∧(x′)) for
each x′ ∈

⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) and t ∈ N. For such x′ and t holds τ̂Nt (x′) = ε ⇔

τNt (∧(x′)) = ε and τ̂Nt (x′) ∈ P̂ ⇒ τNt (∧(x′)) ∈ P , but not necessarily the reverse
implication.

If τNt (∧(x′)) ∈ P and τ̂Nt (x′) /∈ P̂ for a t ∈ N, then τ̂Nt (x′) = ãt and τNt (∧(x′)) =
at with at ∈ Σt or τ̂Nt (x′) = ût̊at and τNt (∧(x′)) = ∧(ût)at with at ∈ Σt and
ût ∈ Σ̃tΣ̊∗t .
So x′ can be decomposed into x′ = v1ãtv2 respectively x′ = v1̊atv2 with v2 ∈ Σ∗

N\{t}.
Because at ∈ P respectively ∧(ût)at ∈ P , v1ãt respectively v1̊at as well as v1˜̄at re-
spectively v1āt are prefixes of structured ∧-representations with ∧(Θ̂N(v1ãt)) =
Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 21

∧(Θ̂N(v1˜̄at)) ∈ pre(w) respectively ∧(Θ̂N(v1̊at)) = ∧(Θ̂N(v1āt)) ∈ pre(w). How-
ever χ̂(v1ãt) 6= χ̂(v1˜̄at) respectively χ̂(v1̊at) 6= χ̂(v1āt), which contradicts the de-
terminism of A� on w.
Therefore the implication τNt (∧(x′)) ∈ P ⇒ τ̂Nt (x′) ∈ P̂ holds, and so
Z[α−1(w)](q) = #({t ∈ N | δ(q0, τ

N
t (∧(x′))) = q and τNt (∧(x′)) /∈ P ∪ {ε}}) for

each q ∈ Q.

Because for each w′ ∈ SRNpre(P ) = pre(SRN(P∪{ε})) =
⋂
t∈N

(τNt )−1(pre(P )) there

exists x′ ∈ pre(ŜR
N

(P̂∪{ε})) =
⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) with w′ = ∧(x′), it holds

Z[α−1(w)](q) = #({t ∈ N | δ(q0, τ
N
t (w′)) = q and τNt (w′) /∈ P ∪ {ε}}) for each

q ∈ Q and w′ ∈ SRNpre(P )(w
′).

Let now ι : S → N be a bijection.
According to Lemma 4 νι : SRSpre(P )(w) → SRNpre(P )(w) is an isomorphism with
τNι(s) ◦ νι = τSs for each s ∈ S. For w′′ ∈ SRSpre(P )(w) let now w′ = νι(w′′) ∈
SRNpre(P )(w) and hence τNι(s)(w

′) = τSs (w′′).
From this it follows that {t ∈ N | δ(q0, τ

N
t (w′)) = q and τNt (w′) /∈ P ∪ {ε}} =

{ι(s) ∈ N | δ(q0, τ
N
ι(s)(w

′)) = q and τNι(s)(w
′) /∈ P ∪{ε}} = {s ∈ S | δ(q0, τ

S
s (w′′)) = q

and τSs (w′′) /∈ P ∪ {ε}}, which proves (23a).
(23b):

If τSt (w′′) = ε, then the proposition holds because pre(ε) \ {ε} = ∅. Therefore let
τSt (w′′) 6= ε.
Because of the assumption ε /∈ P , the proposition holds for y = ε. Therefore let
y 6= ε. As in the proof of (23a), it is sufficient to prove the proposition for S = N.
As in the proof of (23a), there exists x′ ∈

⋂
t∈N

(τ̂Nt )−1(pre(P̂ )) such that w′′ = ∧(x′)

and τNt (w′′) = ∧(τ̂Nt (x′)). Furthermore there exists y′ ∈ pre(τ̂Nt (x′)) \ {ε, τ̂Nt (x′)}
and y = ∧(y′). Hence y′ = ãt with at ∈ Σt or y′ = ût̊at with at ∈ Σt and ût ∈ Σ̃tΣ̊∗t .
As in the proof of (23a), the assumption y ∈ P now contradicts the determinism
of A� on w.

6. SUFFICIENT CONDITION FOR SELF-SIMILARITY

Theorem 4 together with the remarks following Lemma 5 contribute considerably
to a sufficient condition for (14). Therefore the following definition is reasonable.

Definition 8. A prefix-closed language L ⊂ Σ∗ is based deterministically on a
phase P ⊂ Σ+ w.r.t. P, if L is based on P and the deterministic automaton P
accepts P , so that P� is deterministic on each w ∈ L ⊂ (pre(P ))�.

If L is accepted by a deterministic automaton L, then L is based deterministically
on P w.r.t. P, iff L is based on P and the product automaton [Sakarovitch 2009]
of L and P� is deterministic.

We now continue the remarks following Lemma 5. Additionally we assume that
SF ⊂ Φ∗ is based deterministically on PF ⊂ Φ+ w.r.t. PF. At this, let PF be
a deterministic automaton accepting PF , so that PF� is deterministic on each
u ∈ SF .

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



22 · P. Ochsenschläger and R. Rieke

Now by Theorem 4 Z[α−1(u)] formally and unambiguously describes “how a
cooperation partner is involved in several phases”.

Furthermore, let ∅ 6= K ′ ⊂ K and let K be finite.
For ϕ̄K(w) ∈ SF and y ∈ SRK×Npre(PF )(ϕ̄

K(w)) according to Theorem 4 we have

Z[α−1(ϕ̄K(w))](q) = #({(s, t) ∈ K × N | δ(q0, τ
K×N
(s,t) (y)) = q and τK×N(s,t) (y) /∈

PF ∪ {ε}}) for each q ∈ Q. If additionally ϕ̄K
′
(ϕ̂KK′(w)) ∈ SF , then by (21)

ΠK×N
K′×N(y) ∈ SRK

′×N
pre(PF )(ϕ̄

K′(ϕ̂KK′(w))), and also according to Theorem 4 it holds

Z[α−1(ϕ̄K
′
(ϕ̂KK′(w)))](q) =#({(s, t) ∈ K ′ ×N | δ(q0, τ

K′×N
(s,t) (ΠK×N

K′×N(y))) = q

and τK
′×N

(s,t) (ΠK×N
K′×N(y)) /∈ PF ∪ {ε}})

=#({(s, t) ∈ K ′ ×N | δ(q0, τ
K×N
(s,t) (y)) = q

and τK×N(s,t) (y) /∈ PF ∪ {ε}})

≤Z[α−1(ϕ̄K(w))](q) for each q ∈ Q.
(24)

Now let wak ∈ [
⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩ (ϕ̄K)−1(SF ) ⊂ Φ∗K with ak ∈ Φk and k ∈ K.

According to (20) there exists y′ ∈ SRK×Npre(PF )(ϕ̄
K(wak)) such that wak = ΘK×N

K (y′).
This implies

y′ = ya(k,n) with y ∈ SRK×Npre(PF )(ϕ̄
K(w)) as well as a(k,n) ∈ Φ(k,n) with n ∈ N.

(25)
Therewith holds τK×N(k,n) (y′) = τK×N(k,n) (y)a ∈ pre(PF ) and a = τK×N(k,n) (a(k,n)) ∈
Φ. If therefore a /∈ pre(PF ), then this implies τK×N(k,n) (y) 6= ε and τK×N(k,n) (y) ∈
pre(τK×N(k,n) (y′)) \ {τK×N(k,n) (y′)}. Since ϕ̄K(wak) ∈ SF and according to the hypothe-
sis that PF� is deterministic on ϕ̄K(wak), as well as according to (23b) it holds

ε 6= τK×N(k,n) (y) /∈ PF (26)

Now (24) and (26) provide the formal base for a sufficient condition for (14).

Let PF = (Φ, Q, δ, q0, F ) be a deterministic automaton that accepts PF and let
SF = (Φ, QSF , δSF , qSF0) be a deterministic automaton that accepts SF . If SF is
deterministically based on PF w.r.t. PF, then holds

Theorem 5. If for each (qSF , f) ∈ QSF ×NQ0 and (q′SF , f
′) ∈ QSF ×NQ0 for which

exists u, u′ ∈ SF ∩ (pre(PF ))� such that qSF = δSF (qSF0, u), q′SF = δSF (qSF0, u
′),

f = Z[α−1(u)], f ′ = Z[α−1(u′)] and for which f ≥ f ′ the following holds:

{a ∈ Φ ∩ pre(PF ) | δSF (qSF , a) is defined }
⊂ {a ∈ Φ ∩ pre(PF ) | δSF (q′SF , a) is defined } (27a)

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



Phase Based Cooperations · 23

and for each q ∈ Q with f ′(q) > 0 is

{a ∈ Φ \ pre(PF ) | δ(q, a) and δSF (qSF , a) are defined }
⊂ {a ∈ Φ \ pre(PF ) | δ(q, a) and δSF (q′SF , a) are defined } (27b)

then follows

ϕ̂KK′ [[
⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩ (ϕ̄K)−1(SF )] ⊂ (ϕ̄K
′
)−1(SF ) for all ∅ 6= K ′ ⊂ K.

Proof. We show ϕ̂KK′(v) ∈ (ϕ̄K
′
)−1(SF ) by induction on v ∈ [

⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩

(ϕ̄K)−1(SF ) ⊂ Φ∗K , as [
⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩ (ϕ̄K)−1(SF ) is prefix closed.

Induction base. For v = ε holds ϕ̂KK′(v) = ε ∈ (ϕ̄K
′
)−1(SF ).

Induction step.
Let v = wak with ak ∈ Φk and k ∈ K, then w ∈ [

⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩ (ϕ̄K)−1(SF ),

and by induction hypothesis ϕ̂KK′(w) ∈ (ϕ̄K
′
)−1(SF ).

Case 1: k /∈ K ′
Then ϕ̂KK′(v) = ϕ̂KK′(w) ∈ (ϕ̄K

′
)−1(SF ).

Case 2: k ∈ K ′
ϕ̄K(w) ∈ SF because of w ∈ [

⋂
s∈K

(ϕ̄Ks )−1(SF )] ∩ (ϕ̄K)−1(SF ).

According to (25) there exists y ∈ SRK×Npre(PF )(ϕ̄
K(w)) and according to induc-

tion hypothesis ϕ̄K
′
(ϕ̂KK′(w)) ∈ SF .

From (24) and (21) it follows Z[α−1(ϕ̄K
′
(ϕ̂KK′(w)))] ≤ Z[α−1(ϕ̄K(w))] and

ΠK×N
K′×N(y) ∈ SRK

′×N
pre(PF )(ϕ̄

K′(ϕ̂KK′(w))).

Let now u := ϕ̄K(w) and u′ := ϕ̄K
′
(ϕ̂KK′(w)), then u ∈ SF and u′ ∈ SF . The

existence of y ∈ SRK×Npre(PF )(ϕ̄
K(w)) and ΠK×N

K′×N(y) ∈ SRK
′×N

pre(PF )(ϕ̄
K′(ϕ̂KK′(w)))

implies u ∈ (pre(PF ))� and u′ ∈ (pre(PF ))�.
Let now additionally qSF := δSF (qSF0, u), q′SF := δSF (qSF0, u

′), f := Z[α−1(u)]
and f ′ := Z[α−1(u′)], then f ≥ f ′.
v ∈ [

⋂
s∈K

(ϕ̄Ks )−1(SF )]∩(ϕ̄K)−1(SF ) implies ϕ̄K(v) ∈ SF and ϕ̄K(v) = ϕ̄K(w)a

with a ∈ Φ. So δSF (qSF , a) is defined.
k ∈ K ′ implies ϕ̂KK′(v) = ϕ̂KK′(w)ak, and so ϕ̄K

′
(ϕ̂KK′(v)) = ϕ̄K

′
(ϕ̂KK′(w))a.

To complete the induction step it remains to prove, that δSF (q′SF , a) is defined.
For case 2.1: a ∈ Φ ∩ pre(PF ) this follows from the precondition (27a).
For case 2.2: a ∈ Φ\pre(PF ), it follows according to (26) that there exists n ∈
N with ε 6= τK×N(k,n) (y) /∈ PF . Since τK×N(k,n) (y)a ∈ pre(PF ) (25) it exists q ∈ Q
such that δ(q0, τ

K×N
(k,n) (y)) = q and δ(q, a) is defined. Because of (24) for this q

holds f ′(q) = Z[α−1(ϕ̄K
′
(ϕ̂KK′(w)))](q) = #({(s, t) ∈ K ′×N | δ(q0, τ

K×N
(s,t) (y)) =

q and τK×N(s,t) (y) /∈ PF ∪ {ε}}) ≥ 1. From precondition (27b) it follows that
δSF (q′SF , a) is defined, which completes the proof of Theorem 5.

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.



24 · P. Ochsenschläger and R. Rieke

Corollary 1. If all prerequisites of Theorem 5 and additionally those with respect
to SG and PG are fulfilled, then ΠIK

I′K′(LIK) = LI′K′ for I ′ ×K ′ ⊂ I ×K.

The hypotheses for Theorem 5 can be checked at the product automaton of SF
and PF�, if it is finite. If PF and SF are finite automata, then the reachable part
of the product automaton can be constructed step by step (reachability analysis).
If the product automaton is finite, this procedure terminates. Therefore finiteness
of the product automaton can be verified by a semi-algorithm.

7. CONCLUSIONS AND FUTURE WORK

The main result of this paper is a sufficient condition for self-similarity of uniformly
parameterised cooperations. Under certain regularity restrictions this condition can
be verified by a semi-algorithm.

It is well known that dynamic system properties are divided into safety and live-
ness properties [Alpern and Schneider 1985]. Safety properties can be formalised
by prefix closed languages. For abstractions defined by alphabetic language ho-
momorphisms it is easy to see that an abstract system satisfies a safety property
iff the concrete system satisfies a corresponding safety property. So our notion of
self-similarity is compatible with safety properties.

Concerning liveness properties this does not hold in general. In [Nitsche and
Ochsenschläger 1996] a property of homomorphisms is given that implies a similar
relation between liveness properties of an abstract and a concrete system w.r.t. a
modified satisfyability notion. Based on that framework we will investigate liveness
aspects of uniformly parameterised cooperations in a forthcoming paper. Another
topic of interest is the generalisation of this paper to n-sided cooperations.

REFERENCES

Alpern, B. and Schneider, F. B. 1985. Defining liveness. Information Processing Letters 21, 4

(October), 181–185.

Björklund, H. and Bojanczyk, M. 2007. Shuffle expressions and words with nested data. In
Mathematical Foundations of Computer Science 2007, L. Kucera and A. Kucera, Eds. Lecture

Notes in Computer Science, vol. 4708. Springer, 750–761.

Jantzen, M. 1985. Extending regular expressions with iterated shuffle. Theor. Comput. Sci. 38,

223–247.

Jedrzejowicz, J. 1999. Structural properties of shuffle automata. Grammars 2, 1, 35–51.

Jedrzejowicz, J. and Szepietowski, A. 2001. Shuffle languages are in p. Theor. Comput.

Sci. 250, 1-2, 31–53.

Nitsche, U. and Ochsenschläger, P. 1996. Approximately satisfied properties of systems and

simple language homomorphisms. Information Processing Letters 60, 201–206.

Ochsenschläger, P. and Rieke, R. 2007. Abstraction based verification of a parameterised
policy controlled system. In International Conference ”Mathematical Methods, Models and

Architectures for Computer Networks Security” (MMM-ACNS-7). CCIS, vol. 1. Springer. c©
Springer.

Sakarovitch, J. 2009. Elements of Automata Theory. Cambridge University Press.

Fraunhofer SIT Technical Report, SIT-TR-2010/1, 03 2010.


