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Theorem 1 (intersection theorem). Let Z be a parameter
structure, Bz an isomorphism structure for I, and T # (.

i) Let (L})rez for each t € T be a monotonic parame-
terised system, then ( () LY)rez is a monotonic pa-
teT

rameterised system.
ii) Let (LY)1er for each t € T be a scalable system with

respect to Bz, then () LY)rez is a scalable system
teT
with respect to Bz.

Let (LY)1ez for each t € T be a self-similar mono-

tonic parameterised system, then ( (| LY) ez is a self-
teT

similar monotonic parameterised system.

Proof of Theorem 1 (i)—(%ii):

Proof of (i): Let (L%Y);er a monotonic parameterised

system for each ¢ € T, then L%, C L} for t €T, I,I' € I,

and I’ C I. This implies

() £hc ()£

teT teT

iii)

So, (ﬂ LY)1e7 is a monotonic parameterised system.
teT

Proof of (ii): Let (L%)1ez an scalable system with re-
spect to (B(I, K)) (1, k)ezxz for each t € T, then Loty =
L forteT, I, KeZ, and 1€ B(I,K).

Because all L% are isomorphisms,

e () £0) = () ek (€)= [ Lk

teT teT teT
Therefore, (m L) 1e7 is a scalable system
teT

with respect to (B(I,K))(1,k)ezxT -

Proof of (iii): Let (L%)rez a self-similar monotonic
parameterised system for each t € T. For I,I’ € T with
I' c I holds

oy () £h)c (onceh = chc(Lh @
teT teT teT teT

Because () £}, C 2% holds

te’T

teT teT

Together with the second inclusion from (1) it follows
() L4 cap(() £h-
teT teT
Because of the first part of (1) now holds
teT teT

Therefore,

() £Drez

teT

is a self-similar monotonic parameterised system with
respect to Z. [ |

Theorem 2 (simplest well-behaved scalable systems).
(L(L)1)1ez s a well-behaved scalable system with respect
to each isomorphism structure for I based on N and

L(L); = ﬂ (tH~X(L) for each I € T.
i€EN

The proof of Theorem 2 will be given in context of
influence structures because it consists of special cases of
more general results on influence structures (see 32).

Further requirements, which assure that
(L(L,E1,V)1)1ez are well-behaved scalable systems,
will be given with respect to £z, Bz, L and V. This will
be prepared by some lemmata.

Lemma 1. Let &1 := (E(t, 1)), ryeTxz be an influence
structure for I indexed by T, and let V C ¥*. If

Et,I"Y=EtInI (2)
foreacht €T and I,I' €T I' C I, then

(tew.n) ' (V)iez

is a monotonic parameterised system for each t € T, and
by the intersection theorem

(ﬂ (te@,n) (V) 1ez

teT

is a monotonic parameterised system.



Proof: Let I € Z and t € T. From the definitions
of influence homomorphisms and influence structures it
follows

I N Joal a€Xgyr
7—E(t,f)(al) - { el ai €X\Zgun

For I' C I, I' € T and a; € ¥;v then because of (2)

{
{
{

3)

a; € ZE(tJ)mE]/

I N
TE(t,I) (ai) = a; €EXpNEI\Eger

a; € EI/\(EE(t,I)OEI’)

a; €% ’ ’
el = Th(e, 11y (@);

a|
€|
a| aieZE(u/)
€|
_[al
el @ €eXp\Egem

and therefore

!

(TJIE(t,I/))_l(V) C (Tjrﬂ(t,l))_l(v) for V.C¥*. (4)

So,
((Tirj(t,l))_l(v))lez (5)
is a monotonic parameterised system for each ¢t € T'. [ |

Example 1. Let Z be a parameter structure based on N.
ForIe€Z andi€ N let:

oy 4t
E(’L,I).—{ 0]

By the definition of parameter structure N # 0. So

1el
ie N\I ~

&= (E(iaI))(i,I)eNxI

defines an influence structure for I indexed by N. Er

satisfies (2) and by 7§ = T{IZ-} l= Tlgj(i,l) forie N and
Iel.

Now by Lemma 1 for V C ¥*

(rH) ™Y (V))1ez is a monotonic parameterised system

(6)

for each i€ N.

For this special influence structure £z a stronger result
can be obtained.

Lemma 2. Let T be a parameter structure based on N and
ee Lc¥*. Then

(rH) ™M (L))rez

is a self-similar monotonic parameterised system for each
i € N, and by the intersection theorem

(L)) rer

iEN
is a self-similar monotonic parameterised system.
Proof: On account of (6)
g (7)1 L) = ()~ H(L)
has to be shown for I,I'’ € Z, I' C I, and i € N.

(6) implies (r{')~(L) C (v1)~*(L) and therefore,

()7 L) = T () HL) T () THL). (1)

It remains to show II4,((r/)~1(L)) C (Tifl)_l(L).
Case 1.1 ¢ I’

Because of € € L and Till(w) =cfori¢ I’ and w e X7,
it holds (T{/)*l(L) = %7, and so

L (7H Y (L)) c (7)HL) for i ¢ 1. (8)

Case 2. 1€ I’

From definitions of I1£,, 7/

< and T,L-I " follows

7—1.[ :Tij/ oHﬁ, foriel. (9)

For z € I1L, ((r]) (L)) exists y € £} with 7{ (y) € L and
z =111, (y). Because of (9) holds

(@) =7 (W (y) =7 () € L,

hence, z € (Tiﬂ)*l(L). Therefore,

g, («H ML) c (7] )N (L) for i e I'.
Because of (8), (10) and (7) holds

I (7)) 7 (L) = ()7 L)
for I,I'eZ,I'cI and i€ N. [ |

Intersections of system behaviours play an important
role concerning uniformity of parameterisation. Therefore,
some general properties of intersections of families of sets
will be presented.

Let T be a set. A family f = (f)ter with f; € F for
each t € T is formally equivalent to a function f:7 — F
with f; := f(¢).

Let M be a set. A family f = (ft)ter with fy € F =P (M)
for each t € T is called a family of subsets of M.

Let now T # 0 and f a family of subsets of M. The
intersection () f; is defined by

(10)

teT
ﬂ fe={me M|me f; for each t € T}. (11)
teT
If f=gohwithh:T — H and g: H — F then
6= () g (12)

teT zeh(T)

If especially f =h and g is the identity on F', then from

(12) follows
Nro= () =

teT zef(T)

For a second family of sets f': 7' — F with f'(T") =
f(T) follows then

&= F&).
teT t'eT’

In the following we will use family and function nota-
tions side by side.



Let f = (ft)ter a family of sets with f: 7' — F =P (M).
IT=TUT with T# 0 and f(T)={M}, then from (11)

follows
() 1) =) .

teT teT

(13)

Let &2 = (E(t,1))(¢,1yeTxz be an influence structure for
7 indexed by T.
For each I € 7 a family of sets

Er(I) == (E(t,1))ter
with E(t,I) =E7(I)(t) € P(I) is defined, and it holds

Ex(I): T —P). (14)

From (12) it follows (with h = E7(T))
NChen) " VM= () @7'(V) (15

teT weEx (I)(T)

for each V.C X* and I € 7.
For each I € T holds Té(w) =¢ for each w € ¥7. It
follows,

() '(V)=XjifeeV (16)
Because of (12), (13), (15), and (16)
Neben) M= N v
teT e€&2(I)(Ty)
= ﬂ (Té‘(t,l))il(v) (17)
teTy

for each Ty with § #7177 € T and E7(I)(T)\ Ez(I)(Ty) €
{0,{0}} and e € V C ©*.

Each bijection ¢ : I — I’ defines another bijection 7 :
P(I)— P(I') by

i(z) :={uly) € I'ly € x} for each z € P(I). (18)

Lemma 3. Let & = (E(t,1))¢,nerxz be an influ-
ence structure for T indexed by T, and let Br =
(B(I,I')(1,1yezxz be an isomorphism structure for I. Let
eeVCX* andlet (Tx)kez be a family
with 0 # Tk C T and
Er(K)(T)\Ex(K)(Tk) € {0,{0}} for each K €T,
such that [(Ex(I)(Ty)) = Ex(I")(Tyr)

for each (I,I') €I xT and v € B(I,1'), (19
then
ﬂ (Tl{j(t,l))il(v) = m (Té(t,[))il(v) (20)
teT teTy
for each I € Z, and
[ Ter) V= () Thgry) T (V) (21)

teT teT
for each (I,I'Y €I xZ and € B(I,I').

Proof of (20): Because of (17) from assumption (19)
directly follows (20). ]

For the proof of (21) the following property of the
homomorphisms T[I< is needed:

Let ¢ : I — I’ a bijection and K C I, then TLI(IK) ok, =7k
and so

Ty = The o () T (22)
Proof of (22):
The elements of ¥; are of the form a; with i € I and
a € ¥. For these elements holds

a| ieK
TK(‘”){ e] iel\K
_{ a| u(i)euK)
e| (i) e I'\(K)

= TLI(K)(aL(’i)) = TLI(K)(L?(%))

which proves (22). [ |
Proof of (21): Because of (17) and (22)

1) )~ V)

x€€z(I)(Ty)

)™ N @&l
z€€x(I)(Ty)
N ()™ HED V)]

ze€z(1)(Tr)

- N

z€€z(1)(Ty)

=

ze€z(I)(Tr)

- N

z€Ex(I)(Ty)

(Lo (b)) 7N (V)
(T V)

() 71V (23)

From (12) (with A =7) and the assumption (19) follows

N ) ' (V)= N (rh)HV)
z€&€z(I)(Ty) z'ei(Ex(I)(TT))
= N @

o' €€ (I')(T})

Furthermore, from (17) follows

N V)= Ehar) (V). (24)
o' €E7(I')(T}) teT
(23) - (24) prove (21). [ |

The case T'= N, where 7 is based on N, allows a simpler
sufficient condition for (20) and (21).

Lemma 4. Let 7 be a parameter structure based on
N, & = (E(n,1))(n,ryenxz be an influence structure for
Z, and let Bz = (B(I,I’))(L]/)szz be an isomorphism



structure for I.

Lete eV C X%,

for each I €T andn € N let E(n,I) =10,
or it exists an in, € I with E(n,I)= E(in,I), and (25b)
for each (I,I'Y € IxZI,.€ B(I,I') and i € I holds

(25a)

B, 1)) =E((),I"). (25c¢)
Then
) Chnn) " V)= () Thar) (V) (26)
neN nel
for each I € Z, and
) Chn) V= () Chm) V) (27)

neN neN

for each (I,I') €I xT and € B(I,I').

Proof: From (25b) follows Ez(I)(N) = Ez(I)(I) or
Ex(I)(N) = Ex(I)(1){D}, so

E(I)(N)\Ez(I)(I) € {0,{0}} for each T €Z.  (28)
From (25¢) follows
UE(I)(I)) C Ex(I)(I). (29)

Because ¢ : [ — I' is a bijection, for each i’ € I’ exists
an ¢ € I with ¢(i) =4'. Because of (25¢) holds I(E(i,])) =
E@',I'), where E(i,I) € E(I)(I). From this follows

Ex(I)(I') C i(Ez(I)(T)).

Because of (28) - (30), with T =N and (T7)7ez = (I)1e7,

(30)

(25a) — (25¢) implies (19).

Example 2 (Example 1 (continued)). Let Z be a param-
eter structure based on N and Bz = (B(I, I’))(Lp)ele be

an isomorphism structure for Z. Then E7 satisfies (25b)
and (25¢).

So for e € L C ¥* Lemma 4 implies

ﬂ (whH=H(r) = ﬂ (t1y=(L) for each I € T and

neN nel
LI EDH@ = () D7) (31)
neN neN

for each (I,I') € ZxZ and ¢ € B(I,I").

Now Lemma 2 together with (31) proves Theorem 2.
(32)

Because of 7/ = Té(n 1 for I €Z and n € N, (31) and

the definitions of (L(L)r)rez and (L(L,E7,V)1) ez imply
L= = E) )N () @)~ HV)

nel nel nel
=LL)n () () HV)
nenN
:‘C(L)Iﬂ m (T]I;w(mj))il(V)
neN
:’C(nglvv)l

forIeZand V D L.

(33) gives a representation of (£(L);)rez in terms of
(L(L,Ez,V)1)1ez-

For the following theorems please remember that by the
general definition of £L(L,&y, V) it is assumed that () #£ L C
V and L,V are prefix closed. This impliese € L C V.

(33)

Lemma 5. LetZ be a parameter structure, E7 an influence
structure for I indexed by T and Bz an isomorphism
structure for I.

Assuming (2) and (19), then

(‘C(L7‘€I7V)I>IEI
is a scalable systems with respect to Br.

It holds L(L,E1, V)1 =L(L)10 () (Thgn.ry) (V)
neTy

for each I €T.

Proof: By Theorem 2, (L(L)1) ez is a scalable system
with respect to Bz. By Lemma 1 and 3 (21)

(m (Té(t,l))_l(v))fel—

teT

is a scalable system with respect to Bz too. Now part
(ii) of the intersection theorem proves (L(L,E7,V)r1)rez
to be a scalable system with respect to Bz. Lemma 3 (20)
completes the proof of Lemma 5. ]

Using Lemma 4 instead of Lemma 3 proves the follow-
ing.

Theorem 3 (construction condition for scalable systems).
By the assumptions of Lemma 4 and (2) with T = N,
(L(L,E1,V)1)1ex is a scalable system with respect to Br.
It holds L(L,Ez,V)1 = L(L)1N N (Th, 1)) (V)

nel

Remark 1. It can be shown that in SP(L,V) IN can be
replaced by each countable infinite set. Let therefore N’ be
another set and v : IN — N’ a bijection. L%, D XN Y
is the isomorphism defined as in the definition of isomor-
phism structure. It now holds

oN=0No N and 7N = LJE];L) 0N, (34)
for each n € N. Furthermore,
N TN = Hf\(fj,{) o, (35)



for each K C IN. From (34) and commutativity of intersec-
tion now

(N EHHL)nE©™) (V)=
nelN
= (N E)H @) n©N)Hv)
nelN
=(N)TUCN) EDTH@)n©N) V)L (36)
n’eN’
By (35),
R o (N) 7 = (N oy (37)
Because of (36) and (37)
R[] =MLy nEN) (V) =
nelN
= (NNl @) nEY) T V).
n'eN (38)
From
() D) ~HL) n (@)L (V)] c (0%) L (V)
nelN
now follows
Yo [ @) H@)ne)~1(v)]
n’'eN’
c KON HV).  (39)
Because of (34) ONo ()71 = N and so
©N)L V) =N, (™)L (V).
Therefore, from (39) follows
V6l () @EOHH@)n@e)~t v c ©¥)~H(v).
n’eN’
(40)

Because for each ) £ K' C N’ it exists an 0 # K C N
with K’ = 1(K), by SP(L,V), we get for each ) # K C IN
a corresponding inclusion with N’ replacing N and K' for
K.

Lemma 6. The assumptions of Lemma 1 and Lemma 2
together with SP(L,V') imply that (X (L,V,t)1)rcz with
X(LV,)r= () () ML) N (T, ry) (V)
neN
is a self-similar monotonic parameterised system for each

teT.

Proof: By Lemma 1 and Lemma 2,
(g o) (V))iez  and (ﬂ (th) "M (L))rex  are

monotonic parameterised systems So by the intersection
theorem (X (L,V,t)r)rez is a monotonic parameterised
system for each ¢ € T'. Therefore

X(L,V,t)p =15 (X(L,V,t)pr) c TIL (X (L, V,1)1)

for each I,I’ € Z with I’ C I. So the proof of self-similarity
can be reduced to the proof of

5 (X (L, V,t)1) € X(L, V)

for each t € T and I,I’ € T with I’ C I.
Because by Lemma 2

( m (t2) "M (L)) rex

nenN

(41)

is self-similar, it holds

I3 (X(L,V,t)r) UL () () 7HL) = () (m) (L)
neN neN

So the proof of (41) can be reduced to the proof of

L[ () (5 HE) N () V) € ()™M (V)

nenN
(42)
for each t € T and I,I’ € T with I' C I.
For each w e ( () (7})~1(L))N (TE(t I)) LV) exists a

relN and u; € EE(tJ\; for 1<i<randuw; € EI\E(t n for
1 <4 <r with w=wujviugvy...upvp.
Note that 3¢ :=0 and 0* = {5}
Because ujusz...u, € ZE(t’I) and vivy.
holds

~Vr € B\ g

@N(uluQ ceUp) = T}E(t’”(ulug e Uy)

= Tg(t, nw)ev. (43)
With the same argumentation holds
N (uug .. up) = T (ugug . oup) = T (w) € L (44)
for n € E(t,I) and
N (uiug...uy) =c€L (45)
for n € N\ E(t,I). With (43) - (45) now
wruz...up € (1) (m)"HL) N (ON)TH(V),
nenN
and on behalf of precondition SP(L, V') holds
H?f(uluQ e Up) :HJIE”(;}QLI) (urug ... uy)
€ XhnpanNO©Y)HV).  (46)
Furthermore,
Hf,( ) *Hf,(ulvluzvg Uy )
(1) INE(t,I)
HI’OE(t 1)(“ )HI’\E‘(t I)(”l)
E(t,1) I\E(t,T)
Uk (ur)HI’\E(t,I)('UT)' (47)

Because of (2), E(t,I') C E(t,I) and so I'\ E(t,I) C
I'\ E(t,I') and thus

4 INE(t,I
ThI) (Hzf\\E((t I)))( i)=¢

for 1 <4 <r. With (2) and (47) it follows

B(t,I)

Té(t,[’) (H%/ (7,U)) = Té(t,]’) (HE(t,],) (u1 . UT)) (48)



Because TE ‘ I,)( z) = 0N (z) for each z € X, 1) DOW on
behalf of (48), (2), and (46)
E(t,I)

7.E(t 1) (H H(w)) = (HE(t [/)(Ul up)) €V,

and thus I}, (w) € (Té(typ))fl(V). This proves (42) and
completes the proof of Lemma 6. [ ]
Because of the idempotence of intersection

() ) DN () Thery) (V)

neN teT
— NN ED L)AL V)L
teT neN
Now the intersection theorem and Lemma 6 imply

Lemma 7. If SP(L,V),
Lemma 1 and 2

[ ﬂ ()N (LN ﬂ (Té(t,j))il(v)]lez

neN teT

then by the assumptions of

is a self-similar monotonic parameterised system.
Combining Lemma 7 with Lemma 5 or Theorem 3 imply

Theorem 4 (construction condition for well-behaved
scalable systems). By the assumptions of Lemma 5 or
Theorem 3 together with SP(L,V')

(L(L,E7,V)D)1ez

is a well-behaved scalable system.

Theorem 5 (inverse abstraction theorem). Let ¢ : ¥* —
®* be an alphabetic homomorphism and W, X C ®*, then
SP(W, X) implies SP(p~ (W), 1(X)).

Proof of Theorem 5:
Let K be a non-empty set. Each alphabetic homomor-
phism ¢ : ¥* — ®* defines a homomorphism ¥ : 3% —
@7 by

@K(an) = (@(a))n (49)

If ?K &7 — ® and S @7 — © are defined analogous
to 7K and ©K | then

for ap, € ¥k, where (), =¢.

gDOTn =7, ocp , and chGK:éKOgDK (50)

Let now N be an infinite countable set. Because of (50),
for W, X C o*

() @) e NNEN) e (X))
neN
= E)M) @EHTTw)nE©N) X)L (51)
nenN
Because of ¢ (w) = o™ (w) for w € % C X% and 0 #
KCN
(") H2) C (p™)7H(2) for Z C @ (52)
If now SP(W, X), and
IE[(@™) 1Y) = (™) I [Y]) (53)

for Y € ®% and 0 # K C N, where IT} : &%, — @3 is
defined analogous to IT%., then follows (with (50) - (53))
ORI} @) e )N @)~ e (X))
neN
= ()T @R EO W) N M) )
nenN
< (@)7HOM)THX)) € (M) TH(OM) (X))
= (") e (X)) (54)
With (54)
SP(o~ 1 (W), 1(X)) follows from SP(W,X),  (55)
if (53) holds.
It remains to show (53). For the proof of (53) it is
sufficient to prove
IR (™) Hy) = (") MK () (56)
for each y € @7, because of
IR (" = J X (®))
yey

and

yey
Here, for f: A— B and b € B we use the convention
F7He) = Y.

With Y = {y} (56) is also necessary for (53), and so it
is equivalent to (53).

Definition 1 ((general) projection). For arbz’tmry alpha-

bets A and A’ with A’ C A general projections w5, : A* —
A" are defined by
Ay [al aed
A (a) .—{ el acA\A (57)

In this terminology the projections
Y 2% — O3 and T : @3 — &%

considered until now are special cases, which we call
parameter-projections. It holds

Y =5 and T = mg Y. (58)

Because of the different notations, in general we just use
the term projection for both cases.

We now consider the equation (56) for the special case,
where ¢ : ¥* — ®* is a projection, that is ¢ = 77% with

® C ¥. In this case also o : ¥y — @4 is a projection,
with
)
o™ = 7T<1>]]\\,] (59)
Lemma 8 (projection-lemma).
Let A be an alphabet, A' C A, T CA and T = A'NT, then

)W) = ) R ()

7TA’ (7



for each y e I'*.
Proof: Let y € T'*. We show

7

78 (n8(2)) = m& (y) for each z € (r2)"1(y)  (60)
and we show that
for each u € (wlé,,)_l(ﬂ'ﬁ,(y)) there exists a
v e ()L (y) such that 75 (v) = u. (61)

From (60) it follows that

TR () () € (1) M (R ()

and from (61) it follows that

(&) @R () C 7 RA((7R) L)),

which in turn proves Lemma 8. ,
Proof of (60): By definition of 78, 75 and 7%, follows
ey (ma(2)) = 780 (7 (2))
for each z € A* and therewith (60).
Proof of (61) by induction on y € I'*:
Induction base. Let y =¢, then u € (A’\I")* for each u €
(w8 )~ H(w X/ (y)). From this follows
78/ (v) = u with v :=u € (78) " 1(e).
Induction step. Let y =gy with y € I'* and § €T
Case 1: g e T\I"=TN(A\A)
Then ) ,
()~ (r 2 () = ()~ (7R ().

By induction hypothesis then for each u € (ﬂ'lé//)_l (3 ()
it exists © € (rf)71(y) such that 7%, (%) = u.
With v := 9§ holds 72 (9) = ) = y and hence

v e (mf)"y) and 78 (v) = 78 () = u.

Case 2: g eIV C A’

Then 7X/(y) = 7X%(9)9. Therefore, each u €
(ﬂ%l)_l(ﬂﬁ,(y)) can be departed into u = 4jt4 with

Qe (nB) (7R, (§)) and @ € (A'\T)*.

By induction hypothesis then exists © € (72)~%(g) such
that 74, (0) = @.

With v := 6§a holds 78 (¢94) = §J = y and hence

v e (r8)L(y) and 75/ (v) = 78 (D) F0 = g = u.

This completes the proof of (61). [ |
For y € I'* holds

T (y) = Thar () = T (y).
Therewith, from Lemma 8 follows
72 ((7R) 7L (y)) = (7p ) "Mk (y)) for each y € T*. (62)

For0#A#KCN,»CX,A:=%X§N,A" =Yk, and ':=Dy
holds IV = A'NT = P

Assuming ¢ = ﬂ%, which implies ¥ = wgﬁ , then from
(62) (with (58) and (59)), follows
IR (™)) = (™) TIX (v))
for y € @}, and so (56). With this,
premise (53) is fulfilled for (55), when ¢ is a projection,

(63)
which proves Theorem 5 for projections.

Definition 2 (strict alphabetic homomorphism). Let X,
D alphabets, and ¢ : X* — ®* a homomorphism. Then ¢ is
called alphabetic, if ¢(3) C ®U{e}, and ¢ is called strict
alphabetic, if (X) C .

Each alphabetic homomorphism ¢ : ¥* — ®* is the
composition of a projection with a strict alphabetic ho-
momorphism, more precisely,

Y=¢s Oﬂ-i*l(@)ﬂﬁ) (64)

where g : (¢~ H(®)NX)* — ®* is the strict alphabetic
homomorphism defined by

ws(a):=p(a) for a € p~H(P)NX.

For W, X C ®* and ¢ : ¥* — ®* alphabetic (64) implies

e W) (721 gys) " ((125) (W) and
o0 =12 g) M (95) T ().

Now with (63) and (65) it remains to prove Theorem 5
for strict alphabetic homomorphisms. This will be done
by Lemma 9, which proves (56) for strict alphabetic
homomorphisms.

(65)

Lemma 9. Let ¢ :3* — ®* be a strict alphabetic homo-
morphism, then for all y € ®3 and 0 # K C N holds

IR (™)) = (o)~ HIE ().

Proof: Proof by induction on y.
Induction basis: y =¢
Because ¢ is strict alphabetic

(™)1 (e) = {e} and so I ((¢™) "1 (e)) = {e}.
For the same reason
(™) IR () = (o) " e) = {e}-

Induction step: Let y = y'a; with a; € @, where a € ®
and ¢t € N. Because ! is alphabetic, it holds

(™M) W'a) = (™M) NN (ar)),
and so
(™) 7 (W ar)) = T (™)~ )TE (™) (ar)).-
Also holds

(™) MR (v'ar) = (") "MK () (0%) 7 IR (ar)).



According to the induction hypothesis, it holds
IR (™M)~ W)) = (™) T IR ).
Therefore, it remains to show
IR (™) ar)) = (™) 7 HIR (ar))-

Case 1: t ¢ K
Because ¢ is strict alphabetic, it holds (™)1 (as) C ¢,

S0
IR (™)™ ar)) = {e}-
Additionally holds IT1¥(a¢) = ¢, and therewith

(™) MR (ar) = {e},

because ¥ is strict alphabetic.
Case 2: te K
Because ¢!V is strict alphabetic, it holds

(™) (ar) = {br € Stl(b) = a},
and therewith
IR (™) (ar)) = {br € Sl p(b) = a}.
¥ (at) = a; and therewith
(") 7111 (ar)) = {br € Zelp(b) = a},

because o is strict alphabetic. This completes the proof
of Lemma 9. [ ]
This completes the proof of Theorem 5. [ |



