
c©2006 Springer-Verlag. This is an author-created version of the work with DOI:
10.1007/11962977 6. The original publication is available at www.springerlink.com.
http://link.springer.com/chapter/10.1007%2F11962977_6

Modelling and Analysing Network Security
Policies in a Given Vulnerability Setting

Roland Rieke?

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany
rieke@sit.fraunhofer.de

Abstract. The systematic protection of critical information infrastruc-
tures requires an analytical process to identify the critical components
and their interplay, to determine the threats and vulnerabilities, to assess
the risks and to prioritise countermeasures where risk is unacceptable.
This paper presents an integrated framework for model-based symbolic
interpretation, simulation and analysis with a comprehensive approach
focussing on the validation of network security policies. A graph of all
possible attack paths is automatically computed from the model of an
ICT network, of vulnerabilities, exploits and an attacker strategy. Con-
straints on this graph are given by a model of the network security policy.
The impact of changes to security policies can be computed and visu-
alised by finding differences in the attack graphs. A unique feature of the
presented approach is, that abstract representations of these graphs can
be computed that allow comparison of focussed views on the behaviour
of the system. This guides optimal adaptation of the security policy to
the given vulnerability setting.

Keywords: threats analysis, attack simulation, critical infrastructure
protection, network security policies, risk assessment, security modelling
and simulation.

1 Introduction

Information and communication technology (ICT) is creating innovative systems
and extending existing infrastructure to such an interconnected complexity that
predicting the effects of small internal changes (e.g. firewall policies) and exter-
nal changes (e.g. the discovery of new vulnerabilities and exploit mechanisms)
becomes a major problem. The security of such a complex networked system
essentially depends on a concise specification of security goals, their correct and
consistent transformation into security policies and an appropriate deployment
and enforcement of these policies. This has to be accompanied by a concept to
adapt the security policies to changing context and environment, usage patterns
and attack situations. To help to understand the complex interrelations of se-
curity policies, ICT infrastructure and vulnerabilities and to validate security

? Part of the work presented in this paper was developed within the project SicAri
being funded by the German Ministry of Education and Research.

http://link.springer.com/chapter/10.1007%2F11962977_6

goals in such a setting, tool based modelling techniques are required that can
efficiently and precisely predict and analyse the behaviour of such complex inter-
related systems. These methods should guide a systematic evaluation of a given
network security policy and assist the persons in charge with finally determining
exactly what really needs protection and which security policy to apply.

A typical means by which an attacker or his malware try to break into a
network is, to use combinations of basic exploits to get more information or
more credentials and to capture more hosts step by step. To find out if there
is a combination that enables an attacker to reach critical network resources or
block essential services, it is required to analyse all possible sequences of basic
exploits, so called attack paths. Based on such an analysis, it is now possible to
find out whether a given security policy successfully blocks attack paths and is
robust against changes in the given vulnerability setting.

For this type of security policy analysis, a formal modelling framework is
presented that, on the one hand, represents the information system and the
security policy, and, on the other hand, a model of attacker capabilities and
profile. It is extensible to comprise intrusion detection components and optionally
a model of the system’s countermeasures. Based on such an operational model, a
graph representing all possible attack paths can be automatically computed. It is
called attack graph in the following text. Now security properties can be specified
and verified on this attack graph. If the model is too complex to compute the
behaviour, then simulation can be used to validate the effectiveness of a security
policy. The impact of changes to security policies can be computed and visualised
by finding differences in the attack graphs. Furthermore, abstract representations
of these graphs can be computed that allow comparison of focussed views on the
behaviour of the system. If there are differences in the detailed attack graphs
but no differences in the abstract representations thereof, this proves that the
different policies are equally effective on the enforcement of security goals on
the abstract level, even if variations in the attack paths are covered by different
policy rules. The subsequent paper is structured as follows. Section 2 gives an
overview of related work. The modelling approach is described in Sect. 3, while
Sect. 4 presents an exemplary analysis of network security policy adaptation
aspects in a given scenario. Finally, the paper ends with an outlook in Sect. 5.

2 Related Work

The network vulnerability modelling part of the framework presented in this
paper is adopted from the approach introduced in [1] and is similar in design to
an approach by Phillips and Swiler in [2] and [3]. A major contribution of [1] was
the use of abstraction methods to visualise compact presentations of the graph
and the inclusion of liveness analysis. Related work of Jha, Sheyner, Wing et al.
used attack graphs that are computed and analysed based on model checking
in [4] and [5]. Ammann et al. presented an approach in [6] that is focussed
on reduction of complexity of the analysis problem by explicit assumptions of
monotonicity. Recent work in this area by Noel, Jajodia et al. in [7] and [8]

describes attack graph visualisation techniques while the work of Kotenko and
Stepashkin in [9] is focussed on security metrics computations.

To model the ICT network, the vulnerabilities and the intrusion detection
systems, a data model loosely resembling the formally defined M2D2 informa-
tion model [10] is used. Appropriate parts of this model are adopted and supple-
mented by concepts needed for description of exploits, attacker knowledge and
strategy and information for cost benefit analysis.

The model of the network security policies used in this paper is based on the
Organisation Based Access Control (Or-BAC) model. A formal approach to use
Or-BAC to specify network security policies was presented in [11]. This approach
is used here to model the network security policies in the attack graph analysis
framework.

The modelling framework is based on Asynchronous Product Automata (APA),
a flexible operational specification concept for cooperating systems [12]. An APA
consists of a family of so called elementary automata communicating by common
components of their state (shared memory). The applied verification method is
implemented in the SH verification tool [13] that has been adapted and extended
to support the presented attack graph analysis methods.

Major focus of the combined modelling framework presented in this paper, is
the integration of formal network vulnerability modelling on the one hand and
network security policy modelling on the other hand. This aims to help adapta-
tion of a network security policy to a given and possibly changing vulnerability
setting. Recent methods for analysis of attack graphs are extended to support
analysis of abstract representations of these graphs.

3 Modelling Critical ICT Infrastructures and Threats

The proposed operational model comprises, (1) an asset inventory including crit-
ical network components, topology and vulnerability attributions, (2) a network
security policy, (3) vulnerability specifications and exploit descriptions, and (4)
an attacker model taking into account the attackers knowledge and behaviour.

3.1 ICT Network Components

The set of all hosts of the information system consists of the union of the hosts
of the ICT network and the hosts of the attacker(s). Following the M2D2 model,
products are the primary entities that are vulnerable. A host configuration is a
subset of products that is installed on that host and affects is a relation between
vulnerabilities and sets of products that are affected by a vulnerability. A host
is vulnerable if its configuration is a superset of a vulnerable set of products and
the affected services are currently running.

In order to conduct a subsequent comparative analysis of attack paths, an
asset prioritisation as to criticality or worth regarding relative importance of a
host is required.

3.2 Network Security Policies

The model of the network security policies is based on the Organisation Based
Access Control (Or-BAC) model. The approach to use Or-BAC to specify net-
work security policies as presented in [11] is adopted here to model the network
security policies in the attack graph analysis framework. The advantage of this
choice is, that it is possible to link the policies in the formal model at an ab-
stract level to the low level vendor specific policy rules for the policy enforcement
points (PEPs) such as firewalls in the concrete ICT network. Please refer to [11]
for such a transformation concept exemplified on the iptables packet filtering
mechanism used in Linux.

Following the Or-BAC based concept, the network vulnerability policy is
given at an abstract level in terms of roles (an abstraction of subjects), activities
(an abstraction of actions) and views (an abstraction of objects). A subject in
this model is any host. An action is a network service such as snmp, ssh or ftp.
Actions are represented by a triple of protocol, source port and target port. An
object is a message sent to a target host. Currently only the target host or rather
the role of the target host is used for the view definition here. To specify the
access control policy using this approach, permissions are given between role,
activity and view.

To illustrate the concept described here, a small example scenario is given
in Fig. 1(a). Modelling concepts and typical analysis outcome will be illustrated
using this example scenario throughout the paper. One possible attack path is
sketched in the scenario. The policy rules for the example scenario are defined
by the table in Fig. 1(b).

Internet

intern zone

ICT network

PEP

CAN_2003_0715
CAN_2002_1262

management zone

CAN_2003_0694
CAN_2003_0693

dmz zone

CAN_xxxx_yyyy
CVE_xxxx_yyyy

Attacker

CAN_2003_0715

teleworker VPN zone

CVE_1999_0035
CAN_2003_0693
CAN_2003_0620

developer zone

CAN_2003_0715
CAN_2002_0649

with special db_host
production zone

vulnerabilities
unknown

customer zone

vulnerabilities
unknown

supplier zone

PEP

(a) ICT network and vulnerabilities

Role View Activity
(source) (target) (service)

internet internet any
any dmz ssh
any dmz smtp
dmz intern ssh
intern any net
intern internet ftp
intern internet rsh
intern dmz ssh
db host production rpc
teleworker dmz any

(b) Network security policy

Fig. 1. Scenario and network security policy

3.3 Vulnerabilities

Vulnerability specifications for the formal model are derived from the Common
Vulnerabilities and Exposures (CVE/CAN) descriptions. The MITRE Corpo-
ration provides a CVE web site (http://www.cve.mitre.org/) with a list of
virtually all known vulnerabilities. The CVE name is the 13 character ID used
by the CVE standards group to uniquely identify a vulnerability. Additional
information about the vulnerabilities also covers preconditions about the target
host as well as network preconditions. Furthermore, the impact of an exploita-
tion of a vulnerability is described. The specifications for the formal model of
the vulnerabilities additionally comprise the vulnerability range and impact type
assessments provided by the National Institute of Standards and Technology
(NIST) (http://nvd.nist.gov/).

Vulnerability Severity. The Common Vulnerability Scoring System (CVSS)
[14] provides universal severity ratings for security vulnerabilities. These rat-
ings are used in the model as an example for a measure of the threat level.
Another example for such a measure is the metric used by the US-CERT (cf.
http://www.kb.cert.org/vuls/html/fieldhelp#metric). These measures are
based on information about the vulnerability being widely known, reported ex-
ploitation incidents, number of infected systems, the impact of exploiting the
vulnerability and the knowledge and the preconditions required to exploit the
vulnerability. Because the approximate values included in those measures may
differ significantly from one site to another, prioritising of vulnerabilities based
on such measures should be used with caution.

To have a vulnerable product installed on some host, does not necessarily
imply, that someone can exploit that vulnerability. A target host is configured
vulnerable, if (1) the target host has installed a product or products that are
vulnerable with respect to the given vulnerability, and (2) necessary other pre-
conditions are fulfilled (e.g. some vulnerabilities require that a trust relation is
established as for example used in remote shell hosts allow/deny concepts).

A second precondition to exploit a vulnerability is, that the target host is
currently running the respective products such as a vulnerable operating system
or server version. If a user interaction is required this also requires that the
vulnerable product is currently used (e.g. a vulnerable Internet explorer).

The third necessary preconditions is, that the network security policy permits
that the target host is reachable on the port the vulnerable product is using from
the host the attacker selected as source.

3.4 Attacker and System Behaviour

Attacker Knowledge. The knowledge of exploits and hosts and the creden-
tials on the known hosts constitute an attackers profile. Knowledge about hosts
changes during the computation of the attack graph because the attacker might
gain new knowledge when capturing hosts. On the other hand, some knowledge
may become outdated because the enterprise system changes ip-numbers or other

configuration of hosts and reachability. In case a vulnerability is exploited, the
model has to cover the effects for the attacker (for example, to obtain additional
user or root credentials on the target host) and also the direct impact on the
network and host such as, to shut down a service caused by buffer overflow.

Dynamic System Behaviour. The information model presented so far covers
the description of a (static) configuration of an ICT network and its vulnerabil-
ities. In the formal model such a configuration describing the state of the ICT
network is represented by APA state components (APA representation of an ICT
network is covered in more detail in [1]).

To describe how actions of attacker(s) and actions of the system can change
the state of the ICT network model, specifications of APA state transitions
are used. These state transitions represent atomic exploits and optionally the
actions that the ICT network system can take to defend itself or to implement
vital services. Formally, a state transition can occur, when all expressions are
evaluable and all conditions are satisfied. So called interpretation variables are
used to differentiate the variants of execution of the same transition. All possible
variants of bindings of interpretation variables from the state components are
generated automatically. So for example for a transition modelling an exploit, all
possible combinations of bindings of source and target host are computed and
further evaluated.

Attacker Behaviour. Attacker capabilities are modelled by the atomic exploits
and by the strategy to select and apply them.

A state transition modelling an exploit is constructed from, (1) a predicate
that states that the attacker knows this exploit, (2) an expression to select source
and target hosts for the exploit, (3) a predicate that states that the target host
is vulnerable by this exploit, (4) an expression for the impact of the execution
of this exploit on the attacker and on the target host as for example the shut
down of services. Optional add-ons are, an assignment of cost benefit ratings to
this exploit and intrusion detection checks.

Several different attackers can easily be included because an attacker is mod-
elled as a role not a single instance and the tool can automatically generate
multiple instances from one role definition.

Modelling of Denial of Service (DoS) attacks aiming to block resources or
communication channels either directly or by side effects require a much more
detailed model of the resources involved. This could be accomplished using the
presented framework but is out of scope of this paper.

Some experiments have been made to generate a set of known exploits for the
attacker(s) from a given algorithm. If for example it is assumed that the attacker
knows 3 different exploits, then all combinations of 3 exploits from the set of all
specified exploits have to be computed and further analysed. Another example
for an attacker strategy is, that the attacker uses only exploits for vulnerabilities
with a severity above a given threshold. This is based on the assumption, that the
vulnerability severity reflects the probability of exploitation of a vulnerability.

Composition of a Model and Computation of an Attack Graph. The SH
verification tool [13] is used to analyse this model. It manages the components
of the model, allows to select alternative parts of the specification and automat-
ically “glues” together the selected components to generate a combined model
of ICT network specification, vulnerability and exploit specification, network
security policy and attacker specification.

After an initial configuration is selected, the attack graph (reachability graph)
is automatically computed by the SH verification tool. Also, on the fly analysis
allows, to stop computation automatically when specified conditions are reached
(or invariants are broken), so called break conditions can be specified using
regular expressions. A violation of a security property for example, can in many
cases be specified as a break condition.

Attack Graph of the Example Scenario. The computed attack graph for
the simple example scenario (assuming the attacker knows all exploits) has 500
nodes and 4136 edges. Now we assume as a more realistic attacker behaviour,
that the attacker will only exploit vulnerabilities with a severity level above
a given minimum. In the example scenario, a severity level of 4 results in an
attack graph with 178 nodes and 1309 edges. This graph is still far too big to
inspect it manually. Figure 2 shows a small section of it. Nodes with circle shape
depict states where the successors are completely shown, nodes with rectangular
shape depict nodes where the successors are cropped. For example the edge
M4 −→ M5 depicts the application of an exploit where the ssh-vulnerability
CAN 2003 0693 was used and the edge M4 −→ M6 depicts an exploit based
on the same vulnerability but in this case operating stealth (not detected).

M-2

M-1

M-3

M-9

M-10

M-5

M-12

M-13

M-6

M-15

M-7

M-17

M-11

M-14

M-18

M-19
M-16

M-20

M-8

M-4

Service_answer

Service_answer
Service_answer

Service_answer

Service_answer

Service_answer

Service_answer

Service_answer

Service_answer

Preprocess_vulnerab.

A_select_exploit

Service_answer

A_select_exploit

Service_answer

Preprocess_vulnerab.

Service_answerA_CAN_2003_0693_ssh_exploit $(3 . 20)

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 20)

A_CAN_2003_0694_sendmail_exploit $(4 . 20)

A_IE_caching_mail $(9 . 6)

Defence_Restart_sshd

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 10) (2)
A_CAN_2003_0693_ssh_exploit $(3 . 10)

A_IE_caching_mail $(9 . 6)

Defence_Restart_sshd

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 10) (2)
A_CAN_2003_0693_ssh_exploit $(3 . 10)

A_IE_caching_mail $(9 . 6)Service_answer

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 10) (2)
A_CAN_2003_0693_ssh_exploit $(3 . 10)

A_IE_caching_mail $(9 . 6)

Service_answer

A_CAN_2003_0693_ssh_exploit $(3 . 20)

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 20) (7)
A_CAN_2003_0693_ssh_exploit $(3 . 20)

A_CAN_2003_0694_sendmail_exploit $(4 . 20) (3)

A_CVE_1999_0035_ftp_exploit $(2 . 2)

A_CAN_2003_0693_ssh_exploit_stealth $(4 . 10) (2)
A_CAN_2003_0693_ssh_exploit $(3 . 10)

A_CAN_2003_0715_dcom_exploit $(4 . 10)

A_CAN_2002_0649_sql_exploit $(4 . 45)

Fig. 2. Attack graph of example scenario (small section)

4 Evaluation of the Model

Abstractions. Abstract representations of the attack graph can be computed
to visualise and analyse compacted information focussed on interesting aspects
of the behaviour. The mappings used to compute the abstract representations
of the behaviour have to be property preserving, to assure that properties are
transported as desired from a lower to a higher level of abstraction and no critical
behaviour is hidden by the mapping. Such properties, namely simplicity, are
given in [15] and and a check for simplicity is implemented in the SH verification
tool [13]. In some applications the SH verification tool already computed graphs
of about 1 million edges in acceptable time and space. But it is impossible to
visualise a graph of that size. So abstraction focussing on some interesting aspect
is definitely a comfortable way to go in this case.

An Example for the Usage of Behaviour Abstraction. For this exper-
iment, the vulnerability range and impact type assessments provided by NIST
(cf. Sect. 3.3) are utilised. Range types of the vulnerabilities in the example sce-
nario are remote (remotely exploitable) and local (locally exploitable). Impact
types used here are unspecific (provides unauthorised access), user (provides
user account access) and root (provides administrator access).

Step 1 - Define a Mapping. Figure 3 defines a mapping of all transitions
representing the exploit of a vulnerability to the respective range and impact
types of the vulnerabilities.

Service_answer

Defence_Restart_sshd

system

A_select_exploit

Preprocessor_gen_vulnerabilities

preprocessing

A_IE_caching_mail

A_null_session

A_CAN_2002_0649_sql_exploit

A_rsh_login

unspecific

A_CVE_1999_0035_ftp_exploituser

A_CAN_2003_0694_sendmail_exploit

A_CAN_2003_0715_dcom_exploit

A_CAN_2003_0693_ssh_exploit_stealth

A_CAN_2003_0693_ssh_exploit

root

remote (Pol)

A_CAN_2003_0620_man_db_exploitlocal

scenario

Fig. 3. Definition of an abstract representation of the attack graph

This mapping denotes, that all transitions (the leaves of the tree) are to be
represented by their respective father nodes, namely system, preprocessing,
unspecific, user, root and local in the abstract representation. The nodes
system and preprocessing are coloured in grey, symbolising that they are
mapped to ε, that means the transitions represented by these nodes are
invisible in the abstract representation. Please ignore the notation (Pol) at
the node remote for the moment.

Step 2 - Compute the Abstract Representation. Figure 4 shows the com-
puted abstract view focussing on the transition types root, user, unspecific
and local. This graph with only 20 states and 37 edges was derived from the
attack graph (cf. Fig. 2) with 178 states and 1309 edges. The simplicity of
this mapping that guarantees that properties are preserved was automati-
cally proven by the tool.

A-3

A-16

A-6

A-12

A-5

A-8

A-1

A-19

A-7

A-9

A-2

A-18

A-15

A-17

A-14

A-10

A-13

A-11

A-4
A-20
start:

(root)

(unspecific)

(root)

(unspecific)

(user)

(unspecific)

(root)

(unspecific)

(root)

(user)

(root)

(root)

(user)

(unspecific)

(root)

(user)

(unspecific)

(root)

(unspecific)

(root)

(user)

(root)
(root)

(unspecific)

(root)

(user)

(root)

(unspecific)

(unspecific)

(root)

(user)

(unspecific)

(user)

(root)

(root)

(unspecific)

(user)

Fig. 4. Abstract view on an attack graph

Step 3 - Optionally Refine the Mapping. If you want to know for exam-
ple, what policies are responsible to allow the attacks shown in Fig. 4 then a
refinement of the abstraction defined in Fig. 3 is necessary. It is possible to
“fine tune” the mapping so that the interpretation variables (cf. Sect. 3.4)
stay visible in the abstract representation. In this case the binding of the
interpretation variable Pol that contains the respective policy can be visu-
alised. This is denoted by (Pol) in the node remote in Fig. 3. The corre-
sponding refined abstract representation is a graph with 34 states and 121
edges when computed on the attack graph in Fig. 2. The initial nodes and
edges of this graph are shown in Fig. 5(a). In comparison to the initial edges
of the graph in Fig. 4 now the details on the related policies are visible.

A-33

A-32

A-34
(unspecific ())

(root (Pol = (any_role,dmz_host,ssh))) (2)
(root (Pol = (any_role,dmz_host,smtp)))

(a) (any role, dmz host, ssh/smtp)

A-33

A-32

A-34
(unspecific ())

(root (Pol = (any_role,dmz_host,smtp)))

(b) (any role, dmz host, smtp)

Fig. 5. Details in the abstract view

Step 4 - Adapt/Optimise the System Configuration. Further analysis re-
veals, that, if the example policy given in Fig. 1(b) is changed to allow only
smtp instead of ssh and smtp for any role to dmz host then the analysis
yields a graph with only 94 states and 783 edges and performing the same
steps as described above leads to the same graph (Fig. 4) in step 2 but a
different one shown in Fig. 5(b) in the refinement step 3.

If alternatively the policy is restricted to allow only ssh instead of ssh and
smtp in the above example, then again you get a different attack graph with
167 states and 1203 edges but the abstract view in step 2 is still the same.

This stepwise analysis demonstrates that there may be differences in the
detailed attack graphs but no differences in the abstract representations thereof.
This indicates that the different policies are equally effective (or not) concerning
the enforcement of security goals on the abstract level, even if variations in the
attack paths are covered by different policy rules.

Using Predicates to Define Abstractions. Let us now assume that the host
db server in the scenario is the most valuable and mission critical host in the
ICT network. So we want to know if in the given scenario, (1) attacks to the
db server are possible, (2) on which vulnerabilities they are based, and, (3) what
policy rules are directly involved.

The abstraction in Fig. 6(a) exemplifies how predicates can be used to define
such a mapping. In this mapping the predicate (T = db server) matches only
those transitions that model direct attacks to the target host db server. The
remote transitions that don’t match that predicate are mapped to ε and so are
invisible.

Evaluating this abstraction on the attack graph from Fig. 2 above results in
the simple graph given in Fig. 6(b). This proves that, (1) in the current policy
configuration attacks to the db server are possible, (2) those attacks are based
on exploits of the vulnerability CAN 2002 0649, and, (3) they are utilising the
policy rule (intern hosts, any role, net). So to prevent this attack, it has to be
decided, if it is more appropriate to uninstall the product that is hurt by this
vulnerability or to restrict the internal hosts in their possible actions by replacing
the above policy with a more restrictive one.

Many further uses of these attack graphs are possible, such as cost benefit
analysis or analysis of intrusion detection configurations.

system

preprocessing

 ~(,(T=db_server),)

 (,(T=db_server),)

remote (,(T=db_server),); (Vul,Pol)

local

scenario

(a) Abstraction used

A-2
start:

A-1

 Pol = (intern_host,any_role,net)))
 (Vul = CAN_2002_0649
((,(T=db_server),)

(b) Resulting graph

Fig. 6. Focus on attacks to the host db server

Liveness properties in this context reflect survivability and business continu-
ity aspects. When a system’s countermeasures and the behaviour of vital services
the system provides are included in the model, then these effects and the system’s
resilience can be analysed. Please refer to [1] for an example.

5 Further Research Objectives

The work presented in this paper brings together, (1) attack graph computation
technology, (2) state-of-the-art policy modelling, and, (3) formal methods for
analysis and computation of abstract representations of the system behaviour.
The aim is, to guide a systematic evaluation and assist the persons in charge
with optimising adaptation of the network security policy to an ever-changing
vulnerability setting.

To seamlessly integrate the methods and tool presented here into a network
vulnerability analysis framework, a tool-assisted transformation of up-to-date
ICT system configuration and vulnerability databases into a formal specifica-
tion of the model is required. This should preferably be based on automatically
updated information of network scanners because administration databases are
typically out-of-date. Recent work by Noel, Jajodia et al. in [7] and [8] already
covers this aspect but more work is needed to facilitate the transformation of
descriptions from vulnerability databases into formal vulnerability and exploit
specifications.

A summarisation of severity ratings for single security vulnerabilities as pro-
vided by CVSS or US-CERT (cf. Sect. 3.3) based on attack graphs has been
addressed in recent work of Kotenko and Stepashkin [9]. Interesting questions
in such an approach are, which attacker strategy or bundle of strategies to ap-
ply and how to “condense” the information in the graph into a comprehensive
measure of the security of an ICT network. Consideration of resilience against
unknown attacks could also contribute to such a measure.

An even more advanced objective is, to extend this framework to support
policy-based, automated threat response that makes use of alert information. Such
a self-adaptive response mechanism could substantially improve the resilience of
policy controlled ICT systems against network attacks.

References

1. Rieke, R.: Tool based formal Modelling, Analysis and Visualisation of Enter-
prise Network Vulnerabilities utilising Attack Graph Exploration. In: In U.E. Gat-
tiker (Ed.), Eicar 2004 Conference CD-rom: Best Paper Proceedings, Copenhagen,
EICAR e.V. (2004)

2. Phillips, C.A., Swiler, L.P.: A graph-based system for network-vulnerability analy-
sis. In: NSPW ’98, Proceedings of the 1998 Workshop on New Security Paradigms,
September 22-25, 1998, Charlottsville, VA, USA, ACM Press (1998) 71–79

3. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph gen-
eration tool. In: DARPA Information Survivability Conference and Exposition
(DISCEX II’01) Volume 2,June 12 - 14, 2001, Anaheim, California, IEEE Com-
puter Society (2001) 1307–1321

4. Jha, S., Sheyner, O., Wing, J.M.: Two formal analyses of attack graphs. In: 15th
IEEE Computer Security Foundations Workshop (CSFW-15 2002), 24-26 June
2002, Cape Breton, Nova Scotia, Canada, IEEE Computer Society (2002) 49–63

5. Sheyner, O., Haines, J.W., Jha, S., Lippmann, R., Wing, J.M.: Automated gen-
eration and analysis of attack graphs. In: 2002 IEEE Symposium on Security
and Privacy, May 12-15, 2002, Berkeley, California, USA, IEEE Comp. Soc. Press
(2002) 273–284

6. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulner-
ability analysis. In: Proceedings of the 9th ACM conference on Computer and
communications security, ACM Press New York, NY, USA (2002) 217–224

7. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical
aggregation. In: VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, New York, NY, USA, ACM
Press (2004) 109–118

8. Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple Coordinated Views for Net-
work Attack Graphs. In: IEEE Workshop on Visualization for Computer Security
(VizSec’05), Los Alamitos, CA, USA, IEEE Computer Society (2005)

9. Kotenko, I., Stepashkin, M.: Analyzing Network Security using Malefactor Action
Graphs. International Journal of Computer Science and Network Security 6 (2006)

10. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2d2: A formal data model for ids
alert correlation. In: Recent Advances in Intrusion Detection, 5th International
Symposium, RAID 2002, Zurich, Switzerland, October 16-18, 2002, Proceedings.
Volume 2516 of Lecture Notes in Computer Science., Springer (2002) 115–137

11. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to
specify and deploy a network security policy. In: Second Workshop on Formal
Aspects in Security and Trust (FAST). (2004)

12. Ochsenschläger, P., Repp, J., Rieke, R., Nitsche, U.: The SH-Verification Tool
Abstraction-Based Verification of Co-operating Systems. Formal Aspects of Com-
puting, The International Journal of Formal Method 11 (1999) 1–24

13. Ochsenschläger, P., Repp, J., Rieke, R.: The SH-Verification Tool. In: Proc.
13th International FLorida Artificial Intelligence Research Society Conference
(FLAIRS-2000), Orlando, FL, USA, AAAI Press (2000) 18–22

14. Schiffmann, M.: A Complete Guide to the Common Vulnerability Scoring System
(CVSS) (2005) http://www.first.org/cvss/cvss-guide.html.

15. Ochsenschläger, P., Repp, J., Rieke, R.: Verification of Cooperating Systems –
An Approach Based on Formal Languages. In: Proc. 13th International FLorida
Artificial Intelligence Research Society Conference (FLAIRS-2000), Orlando, FL,
USA, AAAI Press (2000) 346–350

